設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為P0,且
(1)求點(diǎn)M的軌跡C的方程;
(2)若直線l:y=x+1與(1)中的軌跡C交于A,B兩點(diǎn),求弦長|AB|的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓:+=1(0<b<2),左、右焦點(diǎn)分別為F1,F2,過F1的直線l交橢圓于A,B兩點(diǎn),若|BF2|+|AF2|的最大值為5,則b的值是( ).
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓x2+y2-6x-7=0與拋物線y2=2px(p>0)的準(zhǔn)線相切,則p的值為( ).
A.1 B.2 C. D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,動圓C1:x2+y2=t2,1<t<3,與橢圓C2:+y2=1
相交于A,B,C,D四點(diǎn),點(diǎn)A1,A2分別為C2的左,右頂點(diǎn).
(1)當(dāng)t為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
(2)求直線AA1與直線A2B交點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知動圓圓心在拋物線y2=4x上,且動圓恒與直線x=-1相切,則此動圓必過定點(diǎn)( ).
A.(2,0) B.(1,0) C.(0,1) D.(0,-1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的兩個焦點(diǎn)分別為F1(-1,0),F2(1,0),且橢圓C經(jīng)過點(diǎn)P.
(1)求橢圓C的離心率;
(2)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且=+,求點(diǎn)Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
以雙曲線-=1的右焦點(diǎn)為圓心且與雙曲線的漸近線相切的圓的方程是( ).
A.(x-)2+y2= B.(x-)2+y2=3
C.(x-3)2+y2= D.(x-3)2+y2=3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,該橢圓經(jīng)過點(diǎn)P且離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左,右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)的部分圖象如圖所示,其中為函數(shù)圖象的最高點(diǎn),PCx軸,且.
(1)求函數(shù)的解析式;(2)若,求函數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com