【題目】已知函數(shù)f(x).
(1)求f(﹣1)+f(3)的值;
(2)求證:f(x+1)為奇函數(shù);
(3)若銳角α滿足f(2﹣sinα)+f(cosα)>0,求α的取值范圍.
【答案】(1)(2)證明見解析(3)
【解析】
(1)直接求解求和即可.
(2)令證明即可.
(3)根據(jù)的奇偶性與單調性化簡f(2﹣sinα)+f(cosα)>0求解即可.
(1),故f(﹣1)+f(3)=0;
(2)證明::令g(x)=f(x+1),則,
此時,
∴函數(shù)g(x)為奇函數(shù),即f(x+1)為奇函數(shù);
(3)由(2)可得函數(shù),
函數(shù)g(x)的定義域為R,任取x1<x2∈R,
,
∵x1<x2,
∴,則g(x1)﹣g(x2)<0,
∴函數(shù)g(x)在R上為增函數(shù),
且f(2﹣sinα)=g(1﹣sinα),f(cosα)=g(cosα﹣1),
∴f(2﹣sinα)+f(cosα)>0即為g(1﹣sinα)+g(cosα﹣1)>0,
又∵奇函數(shù)g(x)在R上為增函數(shù),
∴,
解得.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點是橢圓上的任意一點,直線與橢圓交于,兩點,直線,的斜率都存在.
(1)若直線過原點,求證:為定值;
(2)若直線不過原點,且,試探究是否為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P是橢圓上的動點,、為橢圓的左、右焦點,O為坐標原點,若M是的角平分線上的一點,且F1M⊥MP,則|OM|的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高斯函數(shù)是數(shù)學中的一個重要函數(shù),在自然科學社會科學以及工程學等領域都能看到它的身影.設,用符號表示不大于的最大整數(shù),如,則叫做高斯函數(shù).給定函數(shù),若關于的方程有5個解,則實數(shù)的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為(t為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點是曲線上一點,,求點到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列命題:
①命題“”的否定是“”;
②已知為兩個命題,若為假命題,則為真命題;
③“”是“”的充分不必要條件;
④“若則且”的逆否命題為真命題.
其中 真命題的序號是__________.(寫出所有滿足題意的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1 ,正方形的邊長為分別是和的中點,是正方形的對角線與的交點,是正方形兩對角線的交點,現(xiàn)沿將折起到的位置,使得,連結(如圖2).
(1)求證:;
(2)求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距與橢圓的短軸長相等,且與的長軸長相等.
(1)求橢圓的方程;
(2)設分別為橢圓的左、右焦點,不經(jīng)過的直線與橢圓交于兩個不同的點,如果直線的斜率依次成等差數(shù)列,求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com