【題目】已知點(diǎn)C為圓(x+1)2+y2=8的圓心,P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且有點(diǎn)A(1,0)和AP上的點(diǎn)M,滿足 =0, =2
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為k的直線 l與圓x2+y2=1相切,直線 l與(1)中所求點(diǎn)Q的軌跡交于不同的兩點(diǎn)F,H,O是坐標(biāo)原點(diǎn),且 時(shí),求k的取值范圍.

【答案】
(1)解:由題意知MQ中線段AP的垂直平分線,

∴點(diǎn)Q的軌跡是以點(diǎn)C,A為焦點(diǎn),焦距為2,長(zhǎng)軸為 的橢圓, ,

故點(diǎn)Q的軌跡方程是


(2)解:設(shè)直線l:y=kx+b,F(xiàn)(x1,y1),H(x2,y2

直線l與圓x2+y2=1相切

聯(lián)立 ,(1+2k2)x2+4kbx+2b2﹣2=0,

△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,

,

= = = ,

為所求


【解析】(1)利用線段的垂直平分線的性質(zhì)、橢圓的定義即可得出.(2)設(shè)直線l:y=kx+b,F(xiàn)(x1 , y1),H(x2 , y2)直線l與圓x2+y2=1相切,可得b2=k2+1.直線方程與橢圓方程聯(lián)立可得:(1+2k2)x2+4kbx+2b2﹣2=0,△>0,可得k≠0,再利用數(shù)量積運(yùn)算性質(zhì)、根與系數(shù)的關(guān)系及其 ,解出即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù).

(1)若,極大值;

(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若有兩個(gè)相異零點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(多選題)對(duì)任意實(shí)數(shù),,,下列命題中正確的是( )

A.”是“”的充要條件

B.是無(wú)理數(shù)”是“是無(wú)理數(shù)”的充要條件

C.”是“”的充分條件

D.”是“”的必要條件

E.”是“”的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)(exa)2(exa)2(a≥0)

(1)f(x)表示成u(其中u)的函數(shù);

(2)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD外接于圓,AC是圓周角∠BAD的角平分線,過(guò)點(diǎn)C的切線與AD延長(zhǎng)線交于點(diǎn)E,AC交BD于點(diǎn)F.

(1)求證:BD∥CE;
(2)若AB是圓的直徑,AB=4,DE=1,求AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A=[0, ),B=[ ,1],函數(shù)f (x)= ,若x0∈A,且f[f (x0)]∈A,則x0的取值范圍是(
A.(0, ]
B.[ ]
C.( ,
D.[0, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個(gè)焦點(diǎn),P(1, )是橢圓上一點(diǎn),且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F2 , 且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得 =﹣ 恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2 sinθ.
(1)求圓C的直角做標(biāo)方程;
(2)圓C的圓心為C,點(diǎn)P為直線l上的動(dòng)點(diǎn),求|PC|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案