1.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x-3y的最大值為3.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x+y-4=0}\\{2x-y-5=0}\end{array}\right.$,解得A(3,1),
化目標(biāo)函數(shù)z=2x-3y為y=$\frac{2x}{3}-\frac{z}{3}$,
由圖可知,當(dāng)直線y=$\frac{2x}{3}-\frac{z}{3}$過A時,直線在y軸上的截距最小,z有最大值為2×3-3×1=3.
故答案為:3.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,一等獎500元,二等獎200元,三等獎10元.抽獎規(guī)則如下;顧客先從裝有2個紅球、4個白球的甲箱中隨機摸出兩球,再從裝有1個紅球、2個黑球的乙箱隨機摸出一球,在摸出的3個球中,若都是紅球,則獲一等獎;若有2個紅球,則獲二等獎;若三種顏色各一個,則獲三等獎,其它情況不獲獎.
(I)設(shè)某顧客在一次抽獎中所得獎金數(shù)為X,求X的分布列和數(shù)學(xué)期望;
(Ⅱ)若某個時間段有三位顧客參加抽獎,求至多有一位獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在空間四邊形ABCD中,$\overrightarrow{DA}=\overrightarrow a,\overrightarrow{DB}=\overrightarrow b,\overrightarrow{DC}=\overrightarrow c$,P在線段AD上,且DP=2PA,Q為BC的中點,則$\overrightarrow{PQ}$=( 。
A.$\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$D.$-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是$\frac{π}{2}$,若將y=f(x)的圖象向右平移$\frac{π}{6}$個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求函數(shù)f(x)的解析式及單調(diào)增區(qū)間;
(2)設(shè)函數(shù)$y=3{[{g(x)}]^2}+mg(x)+2(x∈[{0,\frac{π}{2}}])$,求函數(shù)y的最小值φ(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的正視圖和側(cè)視圖如圖所示,該幾何體體積的最大值是( 。
A.$\frac{1}{3}$B.$\frac{π}{6}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.給出方程組$\left\{\begin{array}{l}{x=1+tcosθ}\\{y=1+tsinθ}\end{array}\right.$當(dāng)t為參數(shù)時動點(x,y)的軌跡方程為曲線C1,當(dāng)θ為參數(shù)時動點(x,y)的軌跡曲線C2,且C1與C2的一個公共點為(1+$\sqrt{2}$,1+$\sqrt{2}$).
(1)求C1與C2的普通方程;
(2)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求C2的極坐標(biāo)方程以及C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ≤2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A(-2,0),B(2,0),且△ABM的周長等于2$\sqrt{6}$+4.
(1)求動點M的軌跡G的方程;
(2)已知點C,D分別為東直線y=k(x-2)(k≠0)與軌跡G的兩個交點,問在x軸上是否存在定點E,使$\overrightarrow{EC}$2+$\overrightarrow{EC}$•$\overrightarrow{CD}$為定值?若存在,求此定值并求出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C過點P($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.
(1)求圓C的方程;
(2)設(shè)Q為圓心C上的一個動點,求$\overrightarrow{CQ}$•$\overrightarrow{MQ}$的最小值;
(3)過點P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標(biāo)原點,試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$x2+mlnx(m∈R).
(1)若曲線y=f(x)在點(1,f(1))處的切線經(jīng)過點(3,3),求m的值;
(2)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:?x1,x2∈[1,m],恒有H(x1)-H(x2)<1.

查看答案和解析>>

同步練習(xí)冊答案