【題目】已知有窮數(shù)列共有,首項,設該數(shù)列的前項和為,且其中常數(shù).

(1)求證:數(shù)列是等比數(shù)列

(2)若,數(shù)列滿足,求出數(shù)列的通項公式

(3)若(2)中的數(shù)列滿足不等式,求出的值

【答案】(1)證明見解析

(2)

(3)

【解析】

1)利用分類討論的思想,分別對時和時進行討論,求得的關系,即可求解;

2)結合(1)的結論和條件得的表達式,對進行化簡,結合對數(shù)運算即可求得數(shù)列的通項公式;

3)利用分類討論對的大小進行判斷,再結合不等式去絕對值,變形得關于的不等式,即可求解.

1)當時,,則;

時,,,

,

數(shù)列是等比數(shù)列.

2)由(1)得,

,

3)設,解得,又是正整數(shù),于是當時,;

時,

原式

,得,又

,345,6,7時,

原不等式成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮數(shù)列,滿足.

1)若,求數(shù)列前10項和;

2)若,且數(shù)列2017項中有100項是0,求的可能值;

3)求證:在數(shù)列中,存在,使得.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))在處取得極值,其中,,為常數(shù).

I)試確定的值;

II)討論函數(shù)的單調(diào)區(qū)間;

III)若對任意,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年的423日為世界讀書日,某調(diào)查機構對某校學生做了一個是否喜愛閱讀的抽樣調(diào)查.該調(diào)查機構從該校隨機抽查了100名不同性別的學生(其中男生45名),統(tǒng)計了每個學生一個月的閱讀時間,其閱讀時間(小時)的頻率分布直方圖如圖所示:

1)求樣本學生一個月閱讀時間的中位數(shù).

2)已知樣本中閱讀時間低于的女生有30名,請根據(jù)題目信息完成下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為閱讀與性別有關.

列聯(lián)表

總計

總計

附表:

0.15

0.10

0.05

2.072

2.706

3.841

其中:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|;

(2)已知mn1(m,n>0),若|xa|f(x)≤(a>0)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),下列結論中錯誤的是(

A.的圖像關于點對稱B.的圖像關于直線對稱

C.的最大值為D.是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性,并證明有且僅有兩個零點;

(Ⅱ)設的一個零點,證明曲線在點處的切線也是曲線的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示為一名曰塹堵的幾何體,已知 AE⊥底面BCFE , DF AE DF = AE = 1, CE =,四邊形ABCD 是正方形.

1)《九章算術》中將四個面都是直角三角形的四面體稱為鱉臑.判斷四面體 EABC 是否為鱉臑,若是,寫出其 每一個面的直角,并證明;若不是,請說明理由.

2)求四面體 EABC 的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)已知,若函數(shù)沒有零點,求證:

查看答案和解析>>

同步練習冊答案