【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)已知且,若函數(shù)沒(méi)有零點(diǎn),求證:.
【答案】(1)見(jiàn)解析 (2)證明見(jiàn)解析
【解析】
(1)求導(dǎo)后分和兩種情況進(jìn)行討論即可.
(2)由題函數(shù)沒(méi)有零點(diǎn),轉(zhuǎn)換為與在無(wú)交點(diǎn),再求導(dǎo)分析的單調(diào)性與最值,進(jìn)而求得的取值范圍.再代入,構(gòu)造函數(shù)分析單調(diào)性與最值證明即可.
解法一:(1)
當(dāng)時(shí),令得或;
令得.
∴函數(shù)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為
當(dāng)時(shí),令得;
令得或.
∴函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為和.
綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為和.
(2)函數(shù)在時(shí)無(wú)零點(diǎn),即在無(wú)解
則與在無(wú)交點(diǎn)
,在上單調(diào)遞增
,∴
則
由(1)得在上單調(diào)遞增
要證
即證
即證
即證
令
在時(shí)單調(diào)遞增,
所以原不等式成立.
解法二:(1)同解法一
(2)函數(shù)在時(shí)無(wú)零點(diǎn),即在無(wú)解
則與在無(wú)交點(diǎn)
,在上單調(diào)遞增
,∴
則
要證,
即證,
即證
因?yàn)?/span>,
所以只需證 ,
即證 ,
令
,
在時(shí)單調(diào)遞增,
,
所以原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有窮數(shù)列共有項(xiàng),首項(xiàng),設(shè)該數(shù)列的前項(xiàng)和為,且其中常數(shù).
(1)求證:數(shù)列是等比數(shù)列
(2)若,數(shù)列滿(mǎn)足,求出數(shù)列的通項(xiàng)公式
(3)若(2)中的數(shù)列滿(mǎn)足不等式,求出的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知與相交于點(diǎn),線(xiàn)段是圓的一條動(dòng)弦,且,則的最小值是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為常數(shù).
(1)當(dāng)時(shí),求證:有且僅有一個(gè)零點(diǎn);
(2)若函數(shù)在定義域內(nèi)既有極大值,又有極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線(xiàn),交的延長(zhǎng)線(xiàn)于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點(diǎn),為的中點(diǎn),且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線(xiàn)圖如圖所示:
根據(jù)該折線(xiàn)圖可知,下列說(shuō)法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓 的長(zhǎng)軸,長(zhǎng)為4,過(guò)橢圓的右焦點(diǎn)作斜率為()的直線(xiàn)交橢圓于、兩點(diǎn),直線(xiàn),的斜率之積為.
(1)求橢圓的方程;
(2)已知直線(xiàn),直線(xiàn),分別與相交于、兩點(diǎn),設(shè)為線(xiàn)段的中點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時(shí),,若方程有300個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的離心率是,左右焦點(diǎn)分別為,,過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓相交于,兩點(diǎn),當(dāng)直線(xiàn)過(guò)時(shí),的周長(zhǎng)為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線(xiàn)方程;
(3)已知點(diǎn),直線(xiàn),的斜率分別為,.問(wèn)是否存在實(shí)數(shù),使得恒成立?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com