分析 ①利用面面垂直的判定定理去證明EF⊥平面BDD′B′.②當(dāng)x∈[0,$\frac{1}{2}$]時,EM的長度由大變小.當(dāng)x∈[$\frac{1}{2}$,1]時,EM的長度由小變大.所以函數(shù)L=f(x)不單調(diào);③四邊形MENF的對角線EF是固定的,根據(jù)對稱性,可得四邊形MENF的面積S=g(x),x∈[0,1]不是單調(diào)函數(shù);④求出四棱錐的體積,進(jìn)行判斷.
解答 解:①連結(jié)BD,B′D′,則由正方體的性質(zhì)可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正確.
②因為EF⊥MN,所以四邊形MENF是菱形.當(dāng)x∈[0,$\frac{1}{2}$]時,EM的長度由大變。(dāng)x∈[$\frac{1}{2}$,1]時,EM的長度由小變大.所以函數(shù)L=f(x)不單調(diào).所以③錯誤.
③連結(jié)MN,因為EF⊥平面BDD′B′,所以EF⊥MN,四邊形MENF的對角線EF是固定的,根據(jù)對稱性,可得四邊形MENF的面積S=g(x),x∈[0,1]不是單調(diào)函數(shù),故不正確.
④連結(jié)C′E,C′M,C′N,則四棱錐則分割為兩個小三棱錐,它們以C′EF為底,以M,N分別為頂點的兩個小棱錐.因為三角形C′EF的面積是個常數(shù).M,N到平面C'EF的距離是個常數(shù),所以四棱錐C'-MENF的體積V=h(x)為常函數(shù),所以④正確.
故答案為:①④.
點評 本題考查空間立體幾何中的面面垂直關(guān)系以及空間幾何體的體積公式,本題巧妙的把立體幾何問題和函數(shù)進(jìn)行的有機(jī)的結(jié)合,綜合性較強(qiáng),設(shè)計巧妙,對學(xué)生的解題能力要求較高.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{π}{4}$,$\frac{π}{4}$) | B. | ($\frac{π}{4}$,$\frac{3π}{4}$) | C. | (π,$\frac{5π}{4}$) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2-i | B. | -2+i | C. | 2-i | D. | 2+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com