14.設奇函數(shù)f(x)在區(qū)間[3,5]上是增函數(shù),且f(3)=4,則f(x)在區(qū)間[-5,-3]的最大值為-4.

分析 根據(jù)奇函數(shù)在對稱區(qū)間上單調(diào)性特點即可判斷出f(x)在[-5,-3]上單調(diào)遞增,從而得出f(x)在[-5,-3]上的最大值為f(-3),即可求得f(-3)=-4.

解答 解:奇函數(shù)在對稱區(qū)間上的單調(diào)性相同;
∴f(x)在[-5,-3]上是增函數(shù);
∴f(x)在[-5,-3]上的最大值為f(-3)=-f(3)=-4.
故答案為:-4.

點評 考查奇函數(shù)的定義,奇函數(shù)在對稱區(qū)間上的單調(diào)性特點,清楚區(qū)間的對稱性,根據(jù)函數(shù)單調(diào)性求函數(shù)最值的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,直四棱柱ABCD-A1B1C1D1底面是邊長為1的正方形,高AA1=$\sqrt{2}$,點A是平面α內(nèi)的一個定點,AA1與α所成角為$\frac{π}{3}$,點C1在平面α內(nèi)的射影為P,當四棱柱ABCD-A1B1C1D1按要求運動時(允許四棱柱上的點在平面α的同側或異側),點P所經(jīng)過的區(qū)域的面積=$2\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知二次函數(shù)y=f(x)的最小值等于4,且f(0)=f(2)=6.
(1)求f(x)的解析式;
(2)設函數(shù)g(x)=f(x)-kx,且函數(shù)g(x)在區(qū)間[1,2]上是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設函數(shù)h(x)=f(2x),求當x∈[-1,2]時,函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-(a+1)x+1.
(1)解不等式f(x)≥0;
(2)若f(x)在[1,+∞)單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若不等式f(x)≥0在x∈(1,2]上恒成立,求正實數(shù)a的取值范圍;
(4)若不等式f(x)≥0在a∈[1,2]上恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;  
(2)若A⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f($\sqrt{x}$)=$\sqrt{x}$+x(x≥0)的最小值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的離心率為$\frac{\sqrt{3}}{2}$,P(m,n)為圓x2+y2=16上任意一點,過P作橢圓的切線PA,PB,設切點分別為A(x1,y1),B(x2,y2).
(1)證明:切線PA的方程為$\frac{{x}_{1}x}{4}$+y1y=1;
(2)設O為坐標原點,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=2x+1,若f1(x)=f(x),fn+1(x)=f[fn(x)],n∈N*.則f5(x)的表達式為32x+31.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若{an}為等比數(shù)列,且a1a100=64,則log2a1+log2a2+…+log2a100=( 。
A.200B.300C.400D.500

查看答案和解析>>

同步練習冊答案