19.函數(shù)f($\sqrt{x}$)=$\sqrt{x}$+x(x≥0)的最小值為0.

分析 利用換元法和二次函數(shù)的性質(zhì)得出最小值.

解答 解:令$\sqrt{x}$=t,則f(t)=t+t2=(t+$\frac{1}{2}$)2-$\frac{1}{4}$(t≥0).
∴f(t)在[0,+∞)上是增函數(shù),
∴當(dāng)t=0時(shí),f(t)取得最小值0.
故答案為:0.

點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性與最值的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若f(cosx)=cos2x,則f(1)=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三棱錐S-ABC的所有頂點(diǎn)都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,則球Q的體積為( 。
A.$\frac{\sqrt{3}}{2}$πB.$\frac{3}{2}$πC.$\sqrt{3}$πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是計(jì)算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+…+$\frac{1}{2014}$的一個(gè)程序框圖,判斷框內(nèi)的條件是( 。
A.i>2015?B.i>2014?C.i>1008?D.i>1007?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)奇函數(shù)f(x)在區(qū)間[3,5]上是增函數(shù),且f(3)=4,則f(x)在區(qū)間[-5,-3]的最大值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)是區(qū)間[a,b)上的增函數(shù),也是區(qū)間[b,c]上的增函數(shù),則函數(shù)f(x)在區(qū)間[a,c]上( 。
A.是減函數(shù)B.是增函數(shù)或減函數(shù)
C.是增函數(shù)D.未必是增函數(shù)或減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\frac{ax+b}{x^2+c}$的圖象如圖所示,則下列結(jié)論成立的是( 。
A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果全集U=R,A={x|x2-2x>0},B={x|y=ln(x-1)},則A∪∁UB=( 。
A.(2,+∞)B.(-∞,0)∪(2,+∞)C.(-∞,1]∪(2,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過點(diǎn)P($\sqrt{2}$,1).
(1)求橢圓C的方程;
(2)若A1,A2分別是橢圓的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足MA2⊥A1A2,且MA1交橢圓C于不同于A1的點(diǎn)R,求證:$\overrightarrow{OR}$•$\overrightarrow{OM}$為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案