11.f(x+1)=$\sqrt{f(x)-{f}^{2}(x)}+\frac{1}{2}$,且f(1)=$\frac{1}{4}$,數(shù)列{an}滿足an=f2(n)-f(n),n∈N*,若其前n項(xiàng)和為:-$\frac{35}{16}$,則n的值為(  )
A.16B.17C.18D.19

分析 先求得,${a}_{1}=-\frac{3}{16}$,移項(xiàng),兩邊平方得:[f(x+1)-$\frac{1}{2}$]2=f(x)-f2(x),將:[f(x+1)-$\frac{1}{2}$]2=f(x)-f2(x),代入整理得::an+1+an=-$\frac{1}{4}$,
數(shù)列{an}任意相鄰兩項(xiàng)相加為常數(shù)-$\frac{1}{4}$,當(dāng)n為偶數(shù)時(shí)不成立,當(dāng)n為奇數(shù)時(shí),a1+(-$\frac{1}{4}$)×$\frac{n-1}{2}$=-$\frac{35}{16}$,解得的值.

解答 解:f(1)=$\frac{1}{4}$,${a}_{1}=-\frac{3}{16}$,
f(x+1)=$\sqrt{f(x)-{f}^{2}(x)}+\frac{1}{2}$,
∴f(x+1)-$\frac{1}{2}$=$\sqrt{f(x)-{f}^{2}(x)}$,
兩邊平方得:[f(x+1)-$\frac{1}{2}$]2=f(x)-f2(x),
f2(x+1)-f(x)+$\frac{1}{4}$=f(x)-f2(x),
∴an+1+$\frac{1}{4}$=-an,即:an+1+an=-$\frac{1}{4}$,
∴數(shù)列{an}任意相鄰兩項(xiàng)相加為常數(shù)-$\frac{1}{4}$,
當(dāng)n為偶數(shù)時(shí),分子不可能為奇數(shù),
∴不成立,
∵n為奇數(shù),a1+a2+a3+…+an
=a1+(-$\frac{1}{4}$)×$\frac{n-1}{2}$=-$\frac{35}{16}$,
解得:n=17,
故答案為:B.

點(diǎn)評 本題考查函數(shù)的恒等變換,及數(shù)列的前n項(xiàng)和,學(xué)生需要對函數(shù)式靈活變換,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b2=a3,b3=a7,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知△ABC為直角三角形,∠C=90°,∠B=30°,AB=2,則AC=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.己知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=$\frac{1}{3}$Sn,n∈N*,則an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{3}•(\frac{4}{3})^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x+a.
(1)當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時(shí),函數(shù)f(x)的最大值與最小值的和為$\frac{3}{2}$.求f(x)的單調(diào)區(qū)間與對稱中心
(2)當(dāng)a=-$\frac{1}{2}$時(shí),求出最小正實(shí)數(shù)m,使得函數(shù)f(x)的圖象向右平移m個(gè)單位長度后所對應(yīng)的函數(shù)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an},a1=20,an=an+1+2,求:
(1)a5的值;
(2)數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在△ABC中,角A,B,C的對邊分別是a,b,c,向量$\overrightarrow{m}$=(2b,1),$\overrightarrow{n}$=(2a-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)若b2=ac,試判斷△ABC的形狀;
(2)求y=1-$\frac{2cos2A}{1+tanA}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=x2-px+q,集合A={x|f(x)=x}={2},求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.點(diǎn)M(π,-m)在函數(shù)y=cosx-1的圖象上,則m的值為(  )
A.-2B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案