19.己知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=$\frac{1}{3}$Sn,n∈N*,則an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{3}•(\frac{4}{3})^{n-2},n≥2}\end{array}\right.$.

分析 由an+1=$\frac{1}{3}$Sn,an+2=$\frac{1}{3}$Sn+1可得an+2=$\frac{4}{3}$an+1,再討論即可.

解答 解:∵an+1=$\frac{1}{3}$Sn,an+2=$\frac{1}{3}$Sn+1,
∴an+2-an+1=$\frac{1}{3}$an+1,
∴an+2=$\frac{4}{3}$an+1
又∵a1=1,a2=$\frac{1}{3}$,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{3}•(\frac{4}{3})^{n-2},n≥2}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{3}•(\frac{4}{3})^{n-2},n≥2}\end{array}\right.$.

點(diǎn)評 本題考查了數(shù)列的性質(zhì)的判斷與應(yīng)用及分類討論的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)(x∈R)的部分圖象如圖所示.(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時(shí)相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,a,b,c分別為角A,B,C的對邊,且cos(B-C)-2sinBsinC=-$\frac{1}{2}$.
(1)求角A的大小;
(2)當(dāng)a=5,b=4時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(B)已知等比數(shù)列{an},首項(xiàng)為3,公比為$\frac{2}{5}$,前n項(xiàng)之積最大,則n=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.直線y=x+m與雙曲線2x2-y2=2交于A,B兩點(diǎn),若以AB為直徑的圓過原點(diǎn),求m的值及弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)等比數(shù)列{an}的通項(xiàng)為an=$\frac{1}{n(n+1)}$,則其前10項(xiàng)的和S10等于(  )
A.$\frac{9}{10}$B.$\frac{11}{10}$C.$\frac{10}{9}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.f(x+1)=$\sqrt{f(x)-{f}^{2}(x)}+\frac{1}{2}$,且f(1)=$\frac{1}{4}$,數(shù)列{an}滿足an=f2(n)-f(n),n∈N*,若其前n項(xiàng)和為:-$\frac{35}{16}$,則n的值為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a>0,且不等式(x+t+$\frac{1}{t}$+a)2+(x-$\frac{1}{t}$-2)2≥50對于任意實(shí)數(shù)x∈R,t>0恒成立,則a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=$\sqrt{4{x}^{2}-4x+1}+\sqrt{1-2x+{x}^{2}}$
(1)解不等式f(x)≥x+4.
(2)對任意的x,不等式f(x)≥(m2-3m+3)•|x|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案