3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0且a≠1)在R上單調(diào)遞減,則a的取值范圍是( 。
A.[$\frac{3}{4}$,1)B.(0,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{3}{4}$]D.(0,$\frac{1}{3}$]

分析 根據(jù)分段函數(shù)是在R上單調(diào)遞減,可得0<a<1,故而二次函數(shù)在($-∞,-\frac{2a})$單調(diào)遞減,可得$-\frac{2a}≥0$.且[x2+(4a-3)x+3a]min≥[loga(x+1)+1]max即可得a的取值范圍.

解答 解:由題意,分段函數(shù)是在R上單調(diào)遞減,可得對數(shù)的底數(shù)需滿足0<a<1,
根據(jù)二次函數(shù)開口向上,在($-∞,-\frac{2a})$單調(diào)遞減,可得$-\frac{2a}≥0$,即$-\frac{4a-3}{2}≥0$,解得:$a≤\frac{3}{4}$.
且[x2+(4a-3)x+3a]min≥[loga(x+1)+1]max
故而得:3a≥1,解得:a$≥\frac{1}{3}$.
∴a的取值范圍是[$\frac{1}{3}$,$\frac{3}{4}$],
故選:C.

點評 本題考查了分段函數(shù)的單調(diào)性的運用求解參數(shù)問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知i為虛數(shù)單位,則$\frac{1-i}{i^3}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.平面α的法向量$\overrightarrow{{n}_{1}}$=(x,1,-2),平面β的法向量$\overrightarrow{{n}_{2}}$=(-1,y,$\frac{1}{2}$),若α∥β,則x+y=$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若全集U={0,1,2,3},A={0,1,2},B={0,2,3},則A∪(∁UB)=( 。
A.B.{1}C.{0,1,2}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知圓Q過三點A(1,0),B(3,0),C(0,1),則圓Q的標準方程為(x-2)2+(y-2)2=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.觀察以下不等式:
①1+$\frac{1}{2^2}$<$\frac{3}{2}$;
②1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$;
③1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,
則第六個不等式是1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$+…+$\frac{1}{{7}^{2}}$<$\frac{13}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.兩條直線l1:ax+(1+a)y=3,l2:(a+1)x+(3-2a)y=2互相垂直,則a的值是 ( 。
A.3B.-1C.-1或3D.0 或 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+(b-2)x+3,且-1,3是函數(shù)f(x)的零點.
(Ⅰ)求f(x)解析式,并解不等式f(x)≤3;
(Ⅱ)若g(x)=f(sinx),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在等比數(shù)列{an}中,a2020=8a2017,則公比q的值為( 。
A.2B.3C.4D.8

查看答案和解析>>

同步練習冊答案