3.已知復(fù)數(shù)z=1-i.
(1)設(shè)w=z(1+i)-1-3i,求|w|;
(2)如果$\frac{{z}^{2}+az+b}{1+i}$=i,求實數(shù)a,b的值.

分析 (1)利用復(fù)數(shù)的運算化簡w,求模;
(2)首先化簡分子、分母,利用復(fù)數(shù)相等求a,b.

解答 解(1)因為z=1-i,所以w=z(1+i)-1-3i=1-3i  …(3分)
∴|w|=$\sqrt{10}$;…(7分)
(2)由題意得:
z2+az+b=(1-i)2+a(1-i)+b=a+b-(2+a)i;
(1+i)i=-1+i
所以$\left\{\begin{array}{l}{a+b=-1}\\{-(a+2)=1}\end{array}\right.$,…(12分)
解得$\left\{\begin{array}{l}{a=-3}\\{b=2}\end{array}\right.$.…(14分)

點評 本題考查了復(fù)數(shù)的相等,復(fù)數(shù)的運算;比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,長方體ABCD-A1B1C1D1,AB=BC=2,AA1=$\sqrt{3}$,M為A1D1的中點,P為底面四邊形ABCD內(nèi)的動點,且滿足PM=PC,則點P的軌跡的長度為(  )
A.$\sqrt{3}$B.3C.$\frac{2π}{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=Asin(ωx+φ)(A>0,-π<ω<0,φ>0)在一個周期的區(qū)間上的圖象如圖,則f(x)的解析式為$\sqrt{5}$sin(-$\frac{π}{8}$x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項和為Sn,若S9=81,ak-4=191,Sk=10000,則k的值為100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.冪函數(shù)f(x)=xα(α∈R)過點(2,$\sqrt{2}$),則f(16)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某班有56名學(xué)生,現(xiàn)根據(jù)學(xué)生學(xué)號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知4號、32號、46號學(xué)生在樣本中,那么樣本中還有一個學(xué)生的學(xué)號是18號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是某青年歌手大獎賽上甲、乙兩選手得分的莖葉圖,(其中m為0~9中的一個數(shù)字),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為x、y則一定有( 。
A.x<yB.x>y
C.x=yD.xy的大小與m的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,A=30°,C=45°,則$\frac{2a+c}{2a-c}$=3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖.已知四棱錐P-ABCD,底面ABCD為梯形.PA⊥底面ABCD,AB=BC=2,∠ABC=60°,AD∥BC,AC⊥CD.E為PD中點.
(I)求證:CE∥平面PAB;
(II)若PB與平面PAC所成角的正弦值為$\frac{\sqrt{6}}{4}$,求平面PAB與平面PCD所成的銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案