19.已知點(diǎn)A(-2,-3),B(3,0),點(diǎn)P(x,y)是線段AB上的任意一點(diǎn),則$\frac{y-2}{x+1}$的取值范圍是$(-∞,-\frac{1}{2}]$∪[5,+∞).

分析 設(shè)Q(-1,2),利用斜率計(jì)算公式可得:kQA,kQB.再利用斜率與傾斜角的關(guān)系即可得出.

解答 解:設(shè)Q(-1,2),kQA=$\frac{-3-2}{-2-(-1)}$=5,kQB=$\frac{2-0}{-1-3}$=-$\frac{1}{2}$.
∵點(diǎn)P(x,y)是線段AB上的任意一點(diǎn),
∴$\frac{y-2}{x+1}$的取值范圍是$(-∞,-\frac{1}{2}]$∪[5,+∞),
故答案為:$(-∞,-\frac{1}{2}]$∪[5,+∞).

點(diǎn)評(píng) 本題考查了斜率與傾斜角的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知A,B兩地相距800m,在A地聽(tīng)到炮彈爆炸聲比在B地晚2s,且聲速為340m/s,則炮彈爆炸點(diǎn)的軌跡是雙曲線靠近B點(diǎn)的那一支.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知A是曲線ρ=4cosφ上任意一點(diǎn),求點(diǎn)A到直線$ρcos(θ-\frac{π}{3})=4$距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知樣本x1,x2,…xm的平均數(shù)為$\overline x$,樣本y1,y2,…yn的平均數(shù)$\overline y$,若樣本x1,x2,…xm,y1,y2,…yn的平均數(shù)$\overline z$=α$\overline x$+(1-α)$\overline y$,其中0<α≤$\frac{1}{2}$,則m,n的大小關(guān)系為(  )
A.m<nB.m>nC.m≤nD.m≥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知直線y=kx+2k+1,則直線恒經(jīng)過(guò)的定點(diǎn)(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率與雙曲線x2-y2=1的離心率互為倒數(shù),且橢圓與y軸的一個(gè)交點(diǎn)坐標(biāo)為(0,$\sqrt{2}$).
(Ⅰ)求橢圓M的方程;
(Ⅱ)若直線y=$\frac{\sqrt{2}}{2}$(x-m)交橢圓與A,B兩點(diǎn),橢圓上一點(diǎn)C($\sqrt{2}$,1),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)集合A={x|x>1},B={x|x2<9},則A∩B={x|1<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(π)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.中石化集團(tuán)通過(guò)與安哥拉國(guó)家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:
井號(hào)I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過(guò)1、3、5、7號(hào)井計(jì)算出的$\widehatb,\widehata$的值與(I)中b,a的值差不超過(guò)10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案