1+2sin(2π-2)cos(2π-2)
等于( 。
A、sin2+cos2
B、cos2-sin2
C、-sin2-cos2
D、sin2-cos2
考點(diǎn):二倍角的正弦
專題:三角函數(shù)的求值
分析:原式變形后,利用二次函數(shù)的性質(zhì)化簡,即可得到結(jié)果.
解答: 解:∵
π
2
<2<π,
∴sin2>0,cos2<0,即sin2-cos2>0,
則原式=
1-2sin2cos2
=
(sin2-cos2)2
=|sin2-cos2|=sin2-cos2.
故選:D.
點(diǎn)評:此題考查了二倍角的正弦函數(shù)公式,以及二次根式的性質(zhì),熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x是銳角},B=(0,1),從集合A到集合B的映射是“求正弦”,則B中元素
3
2
相對應(yīng)的A中的元素是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}(n∈N*)的首項(xiàng)a1>0,設(shè)Sn為{an}的前n項(xiàng)和,且S4=S11,則當(dāng)Sn取得最大值時(shí)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-2,α∈(-
π
2
,0),則cosα的值為(  )
A、-
2
5
5
B、
2
5
5
C、-
5
5
D、
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-2<x<3,則
1
x
的范圍是(  )
A、(-
1
3
,
1
2
B、(-∞,-3)∪(2,+∞)
C、(-∞,-
1
2
)∪(
1
3
,+∞)
D、(-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A(3,1),B(4,0),C(a,4)三點(diǎn)共線,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-
3
y+6=0,若直線l′過點(diǎn)(0,1),傾斜角為已知直線l傾斜角的兩倍,則直線l′的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-3x
x
的定義域?yàn)椋ā 。?/div>
A、(-∞,
1
3
]
B、(-∞,
1
3
C、(0,
1
3
]
D、(-∞,0)∪(0,
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x+1.
(1)求函數(shù)f(x)的最小正周期及單調(diào)減區(qū)間;
(2)f(x0)=
16
5
,x0∈[
π
4
,
π
2
],求cos2x0的值.

查看答案和解析>>

同步練習(xí)冊答案