12.函數(shù)f(x)=$\sqrt{x+1}$-$\frac{1}{2-x}$的定義域為( 。
A.[-1,2)∪(2,+∞)B.(-1,+∞)C.[-1,2)D.[-1,∞)

分析 根據(jù)二次根式的性質(zhì)以及分母不是0,得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x+1≥0}\\{2-x≠0}\end{array}\right.$,
解得:x≥-1且x≠2,
故函數(shù)的定義域是[-1,2)∪(2,+∞),
故選:A.

點評 本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.集合A={1,2,3},B={-1,2}.設(shè)映射f:A→B,如果集合B中的元素都是A中元素在f下的象,那么這樣的映射有6個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.等差數(shù)列{an},{bn}的前n項和為分別是An,Bn,且$\frac{A_n}{B_n}$=$\frac{n}{n+1}$,則$\frac{a_4}{b_4}$等于( 。
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{7}{8}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若直線ax+2by-2=0(a>0,b>0),始終平分圓x2+y2-4x-2y-8=0的長,則$\frac{1}{a}$+$\frac{2}$的最值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={-2,3,4m-4},集合B={3,m2 }.若B⊆A,則實數(shù)m=( 。
A.2B.-2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若b2tanA=a2tanB,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a=2${\;}^{-\frac{3}{2}}}$,b=($\frac{2}{5}$)3,c=($\frac{1}{2}$)3,則a,b,c的大小順序正確的是( 。
A.c>a>bB.a>b>cC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列四個條件中,p是q的必要不充分件的是( 。
A.p:a>b,q:a2>b2
B.p:a>b,q:2a>2b
C.p:非零向量$\overrightarrow{a}$與$\overrightarrow$夾角為銳角,q:$\overrightarrow{a}•\overrightarrow>0$
D.p:ax2+bx+c>0,q:$\frac{c}{{x}^{2}}$-$\frac{x}$+a>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.一個盒子里裝有標號為1,2,…,5,6的6張標簽,隨機地選取兩張標簽,根據(jù)下列條件求兩張標簽上的數(shù)字為相鄰整數(shù)的概率:
(1)標簽選取是無放回的;
(2)標簽的選取是放回.

查看答案和解析>>

同步練習冊答案