【題目】對(duì)于函數(shù),若存在實(shí)數(shù)m,使得為R上的奇函數(shù),則稱(chēng)是位差值為m的“位差奇函數(shù)”.
(1)判斷函數(shù)和是否是位差奇函數(shù),并說(shuō)明理由;
(2)若是位差值為的位差奇函數(shù),求的值;
(3)若對(duì)于任意,都不是位差值為m的位差奇函數(shù),求實(shí)數(shù)t的取值范圍.
【答案】(1) 對(duì)于任意有為位差奇函數(shù), 不存在有為位差奇函數(shù).(2) ;(3)
【解析】
(1)根據(jù)題意計(jì)算與,判斷為奇函數(shù)的條件即可.
(2)根據(jù)是位差值為的位差奇函數(shù)可得為R上的奇函數(shù)計(jì)算的值即可.
(3)計(jì)算為奇函數(shù)時(shí)滿(mǎn)足的關(guān)系,再根據(jù)對(duì)于任意都不是位差值為m的位差奇函數(shù)求解恒不成立問(wèn)題即可.
(1)由,所以為奇函數(shù).
故對(duì)于任意有為位差奇函數(shù).
又,設(shè).
此時(shí),若為奇函數(shù)則恒成立.與假設(shè)矛盾,故不存在有為位差奇函數(shù).
(2) 由是位差值為的位差奇函數(shù)可得,為R上的奇函數(shù).即為奇函數(shù).
即,.
(3)設(shè)
.由題意對(duì)任意的均不恒成立.
此時(shí)
即對(duì)任意的不恒成立.
故在無(wú)解.又,故.
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,直線(xiàn)過(guò)點(diǎn),且與拋物線(xiàn)交于、兩點(diǎn),.
(1)求的取值范圍;
(2)若,點(diǎn)的坐標(biāo)為,直線(xiàn)與拋物線(xiàn)的另一個(gè)交點(diǎn)為,直線(xiàn)與拋物線(xiàn)的另一個(gè)交點(diǎn)為,直線(xiàn)與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)當(dāng) 時(shí),判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系上,有一點(diǎn)列,設(shè)點(diǎn)的坐標(biāo)(),其中. 記,,且滿(mǎn)足().
(1)已知點(diǎn),點(diǎn)滿(mǎn)足,求的坐標(biāo);
(2)已知點(diǎn),(),且()是遞增數(shù)列,點(diǎn)在直線(xiàn):上,求;
(3)若點(diǎn)的坐標(biāo)為,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年6月,國(guó)內(nèi)的運(yùn)營(yíng)牌照開(kāi)始發(fā)放.從到,我們國(guó)家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對(duì)的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類(lèi)用戶(hù)分布情況如下:
用戶(hù)分類(lèi) | 預(yù)計(jì)升級(jí)到的時(shí)段 | 人數(shù) |
早期體驗(yàn)用戶(hù) | 2019年8月至2019年12月 | 270人 |
中期跟隨用戶(hù) | 2020年1月至2021年12月 | 530人 |
后期用戶(hù) | 2022年1月及以后 | 200人 |
我們將大學(xué)生升級(jí)時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶(hù)中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶(hù)的).
(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級(jí)到的概率;
(2)從樣本的早期體驗(yàn)用戶(hù)和中期跟隨用戶(hù)中各隨機(jī)抽取1人,以表示這2人中愿意為升級(jí)多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)證明:,都有;
(2)若函數(shù)有且只有一個(gè)零點(diǎn),求的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)若,直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),求;
(2)若,求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AD=2.
(1)求該四棱錐P-ABCD的表面積和體積;
(2)求該四棱錐P-ABCD內(nèi)切球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在年終“尾牙”宴上對(duì)該公司年度的最佳銷(xiāo)售員工進(jìn)行獎(jiǎng)勵(lì),已知員工一年以來(lái)的月銷(xiāo)售業(yè)績(jī)分別為:102,113,123,132,144,138,126,119,108,122,109,146.若該公司為最佳員工準(zhǔn)備了相應(yīng)的獎(jiǎng)品,需要該員工通過(guò)抽獎(jiǎng)游戲進(jìn)行確定獎(jiǎng)品金額,游戲規(guī)則如下:該員工需要從9張卡牌中不放回的抽取3張,其中1張卡牌的獎(jiǎng)金為600元,4張卡牌的獎(jiǎng)金均為400元,另外4張卡牌的獎(jiǎng)金均為200元,所抽到的3張卡牌的金額之和便是該員工所獲得的獎(jiǎng)品的最終價(jià)值.
(Ⅰ)請(qǐng)根據(jù)題意完善員工的業(yè)績(jī)的莖葉圖,并求出員工銷(xiāo)售業(yè)績(jī)的中位數(shù);
(Ⅱ)求的分布列以及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com