已知g(2x+1)=x2+1,求g(x),并求使方程g(|x|)=m有4個不同的根的m取值范圍.
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出g(x)的表達式,從而求出g(|x|)的表達式,將問題轉(zhuǎn)化為函數(shù)的交點問題,畫出圖象即可求出答案.
解答: 解:令t=2x+1,⇒x=
t-1
2
,
g(t)=
1
4
(t2-2t+5),
∴g(x)=
1
4
(x2-2x+5),∴
g(|x|)=
1
4
(|x|2-2|x|+5)
=
1
4
(x2-2x+5),x≥0
1
4
(x2+2x+5),x<0

=
1
4
(x-1)
2
+1,x≥0
1
4
(x+1)
2
+1,x<0

繪圖:如圖示:
g(|x|)=m有4個不同的根等價于直線y=m與曲線g(|x|)有四個不同交點],
∴m∈(1,
5
4
)..
點評:本題考查了函數(shù)解析式的求法,考查函數(shù)的零點問題,考查轉(zhuǎn)化思想,數(shù)形結(jié)合思想,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式x-4y+4≥0表示的平面區(qū)域在直線x-4y+4=0的( 。
A、左下方及直線上的點
B、右下方及直線上的點
C、左上方及直線上的點
D、右上方及直線上的點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為一次函數(shù),g(x)為二次函數(shù),且f[g(x)]=g[f(x)],求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<α<
π
2
,求證:sinα<α<tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,若函數(shù)f(x)=ex-ax,x∈R有大于零的極值點,則( 。
A、a<1
B、a>1
C、a<
1
e
D、a>
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)在曲線x2-y2=1上運動,則
2y
x
-
1
x2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意的[-
1
2
1
2
]時,不等式x2+2x-a≤0恒成立,則實數(shù)a的取值范圍是( 。
A、(-∞,0]
B、(-∞,3]
C、[0,+∞)
D、[
5
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D是邊AC上的點,BD=2且AB=AD,2AB=
3
BD,BC=2BD,求DC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某觀察站C與兩燈塔A、B的距離分別為300米和500米,測得燈塔A在觀察站C北偏東30°,燈塔B在觀察站C正西方向,則兩燈塔A、B間的距離為(  )
A、500米B、600米
C、700米D、800米

查看答案和解析>>

同步練習(xí)冊答案