14.已知隨機變量X+Y=8,若X~B(10,0.6),則E(Y),D(Y)分別是( 。
A.6和2.4B.6和5.6C.2和5.6D.2和2.4

分析 隨機變量X+Y=8,X~B(10,0.6),先求出E(X),D(X),由此能求出E(Y),D(Y).

解答 解:∵隨機變量X+Y=8,X~B(10,0.6),
∴E(X)=10×0.6=6,D(X)=10×0.6×(1-0.6)=2.4,
∴E(Y)=E(8-X)=8-E(X)=8-6=2,
D(Y)=D(8-X)=(-1)2D(X)=D(X)=2.4.
故選:D.

點評 本題考查均值和方差的求法,是基礎(chǔ)題,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{2}{x}$-ln(x-1)的零點所在的大致區(qū)間為(  )
A.(1,2)B.(2,3)C.(3,4)D.(1,2)與(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底圖ABCD是正方形,PD⊥平面ABCD,E是PC的中點
(1)證明:PA∥平面BDE;
(2)若PD=DC=2,求三棱錐P-EDB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.甲、乙兩人在罰球線投球命中的概率分別為$\frac{1}{2}$與$\frac{2}{5}$.
(1)若甲、乙兩人在罰球線各投球一次,求恰好命中一次的概率;
(2)若甲、乙兩人在罰球線各投球兩次,求這四次投球中至少一次命中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.頂點在直角坐標系xOy的原點,始邊與x軸的正半軸重合,且大小為2016弧度的角屬于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)已知復數(shù)z=3+bi,(i為虛數(shù)單位,b為正實數(shù)),且(z-2)2為純虛數(shù),求復數(shù)z;
(2)已知(3x+$\frac{1}{\sqrt{x}}$)n的展開式中各二項式系數(shù)之和為16,求展開式中x項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖是《集合》的知識結(jié)構(gòu)圖,如果要加入“子集”,則應該放在“基本關(guān)系”的下位.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow a$=(4,3),$\overrightarrow b$=(1,-1).
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角的余弦值;
(2)若向量3$\overrightarrow a$+4$\overrightarrow b$與λ$\overrightarrow a$-$\overrightarrow b$平行,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖1,已知四邊形ABFD為直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$為等邊三角形,AD=DF=2AF=2,C為DF的質(zhì)點,如圖2,將平面AED、BCF分別沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF、DF,設(shè)G為AE上任意一點.
(1)證明:DG∥平面BCF;
(2)求平面DEF與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案