【題目】已知函數(shù).
(1)若在上的最大值為,求實(shí)數(shù)的值;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線(xiàn) 上是否存在兩點(diǎn)、,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由。
【答案】(1)(2)(3)對(duì)任意給定的正實(shí)數(shù),曲線(xiàn) 上總存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上
【解析】
試題分析:(1)由,得,
令,得或.
列表如下:
0 | ||||||
0 | 0 | |||||
極小值 | 極大值 |
∵,,,
即最大值為,. 4分
(2)由,得.
,且等號(hào)不能同時(shí)取,,
恒成立,即.
令,求導(dǎo)得,,
當(dāng)時(shí),,從而,
在上為增函數(shù),,. 8分
(3)由條件,,
假設(shè)曲線(xiàn)上存在兩點(diǎn)滿(mǎn)足題意,則只能在軸兩側(cè),
不妨設(shè),則,且.
是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,
, , 10分
是否存在等價(jià)于方程在且時(shí)是否有解.
①若時(shí),方程為,化簡(jiǎn)得,
此方程無(wú)解; 11分
②若時(shí),方程為,即,
設(shè),則,
顯然,當(dāng)時(shí),,即在上為增函數(shù),
的值域?yàn)?/span>,即,
當(dāng)時(shí),方程總有解.
對(duì)任意給定的正實(shí)數(shù),曲線(xiàn) 上總存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上. 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用二分法研究函數(shù)f(x)=x3+3x﹣1的零點(diǎn)時(shí),第一次經(jīng)計(jì)算f(0)<0,f(0.5)>0,可得其中一個(gè)零點(diǎn)x0∈ ,第二次應(yīng)計(jì)算的f(x)的值為f( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)國(guó)務(wù)院批復(fù)同意,鄭州成功入圍國(guó)家中心城市,某校學(xué)生團(tuán)針對(duì)“鄭州的發(fā)展環(huán)境”對(duì)20名學(xué)生進(jìn)行問(wèn)卷調(diào)查打分(滿(mǎn)分100分),得到如圖1所示莖葉圖.
(1)分別計(jì)算男生女生打分的平均分,并用數(shù)學(xué)特征評(píng)價(jià)男女生打分的數(shù)據(jù)分布情況;
(2)如圖2按照打分區(qū)間繪制的直方圖中,求最高矩形的高;
(3)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若Ω是長(zhǎng)方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線(xiàn)段A1B1上異于B1的點(diǎn),F(xiàn)為線(xiàn)段BB1上異于B1的點(diǎn),且EH∥A1D1 , 則下列結(jié)論中不正確的是( 。
A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺(tái)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點(diǎn),有以下四個(gè)結(jié)論:
①直線(xiàn)AM與CC1是相交直線(xiàn);
②直線(xiàn)AM與BN是平行直線(xiàn);
③直線(xiàn)BN與MB1是異面直線(xiàn);
④直線(xiàn)AM與DD1是異面直線(xiàn).
其中正確的結(jié)論為 (注:把你認(rèn)為正確的結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB,E,F(xiàn),G,H分別為PC、PD、BC、PA的中點(diǎn).
求證:(1)PA∥平面EFG;
(2)DH⊥平面EFG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別是橢圓的左、右焦點(diǎn).
(1)若點(diǎn)是第一象限內(nèi)橢圓上的一點(diǎn), ,求點(diǎn)的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線(xiàn)的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的兩條對(duì)角線(xiàn)相交于點(diǎn), 邊所在的直線(xiàn)的方程為,點(diǎn)在邊所在的直線(xiàn)上.
(1)求邊所在直線(xiàn)的方程;
(2)求矩形外接圓的方程;
(3)過(guò)點(diǎn)的直線(xiàn)被矩形的外接圓截得的弦長(zhǎng)為,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn),且圓心在直線(xiàn)上,又直線(xiàn)與圓C交于P,Q兩點(diǎn).
(1)求圓C的方程;
(2)若,求實(shí)數(shù)的值;
(3)過(guò)點(diǎn)作直線(xiàn),且交圓C于M,N兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com