9.復(fù)數(shù)z=$\frac{(i-1)^{2}+1}{{i}^{2}}$的實部為( 。
A.0B.-1C.1D.2

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z得答案.

解答 解:∵z=$\frac{(i-1)^{2}+1}{{i}^{2}}$=$\frac{-2i+1}{-1}=-1+2i$,
∴復(fù)數(shù)z=$\frac{(i-1)^{2}+1}{{i}^{2}}$的實部為:-1.
故選:B.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在長方體ABCD-A1B1C1D1中,AB=1,BC=3,AA1=2,E,F(xiàn)分別是下底面的棱A1B1,B1C1的中點,M是上底面的棱AD上一點,且AM=2,過M,E,F(xiàn)的平面與BA的延長線交于點N,則MN的長度為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{10}}}{3}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{{2\sqrt{10}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓C:(x-$\sqrt{3}$)2+(y-1)2=1和兩點A(-t,0),B(t,0)(t>0),若圓C上存在點P,使得∠APB=90°,則t的取值范圍是(  )
A.(0,2]B.[1,2]C.[2,3]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={0,1},N={x|x=2n,n∈Z},則M∩N為( 。
A.{0}B.{1}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列,滿足a1+2a2=S5,下列結(jié)論中錯誤的是( 。
A.S9=0B.S5最小C.S3=S6D.a5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)$f(x)={(\frac{1}{2})^x}-{x^3}$,已知0<a<b<c,且f(a)•f(b)•f(c)<0,若x0是函數(shù)f(x)的一個零點,則下列不等式不可能成立的是( 。
A.x0<aB.0<x0<1C.b<x0<cD.a<x0<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知三棱椎S-ABC的各頂點都在一個球面上,球心O在AB上,SO⊥底面ABC,球的體積與三棱錐體積之比是4π,AC=$\sqrt{2}$,則該球的表面積等于( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)$z=\frac{3-bi}{i}({b∈R})$的實部和虛部相等,則|z|=(  )
A.2B.3C.$2\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-1}$,其中x∈[-2,1]的值域為[$\frac{1}{8}$,2].

查看答案和解析>>

同步練習(xí)冊答案