如圖,已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD垂足為H,PH是四棱錐的高,E為AD的中點(diǎn).
(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線(xiàn)PA與PEH平面所成角的正弦值.
考點(diǎn):直線(xiàn)與平面所成的角,空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:(1)以H為原點(diǎn),HA,HB,HP分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能證明PE⊥BC.
(2)求出平面PEH的法向量和
PA
=(1,0,-1)
,利用向量法能求出直線(xiàn)PA與PEH平面所成角的正弦值.
解答: (1)證明:以H為原點(diǎn),HA,HB,HP分別為x,y,z軸,
建立空間直角坐標(biāo)系,設(shè)HA=1,
則A(1,0,0),B(0,1,0),
設(shè)C(m,0,0),P(0,0,n),(m<0,n>0),
則D(0,m,0),E(
1
2
,
m
2
,0
),
PE
=(
1
2
,
m
2
,-n
),
BC
=(m,-1,0),
PE
BC
=
m
2
-
m
2
+0=0
,
∴PE⊥BC.
(2)解:∵∠APB=∠ADB=60°,∴由已知條件得m=-
3
3
,n=1,
∴C(-
3
3
,0,0),D(0,-
3
3
,0),E(
1
2
,-
3
6
,0
),P(0,0,1),
設(shè)
n
=(x,y,z)是平面PEH的法向量,
n
HE
=
1
2
x-
3
6
y=0
n
HP
=z=0
,取x=1,得
n
=(1,
3
,0),
PA
=(1,0,-1)

∴|cos<
PA
,
n
>|=|
1
2
•2
|=
2
4

∴直線(xiàn)PA與PEH平面所成角的正弦值為
2
4
點(diǎn)評(píng):本題考查異面直線(xiàn)垂直的證明,考查直線(xiàn)與平面所成角的正弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2+mx+m+n=0的兩根分別為橢圓和雙曲線(xiàn)的離心率.記分別以m,n為橫、縱坐標(biāo)的點(diǎn)A(m,n)表示的平面區(qū)域D.若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校舉行演講比賽,9位評(píng)委給選手A打出的分?jǐn)?shù)如莖葉圖所示,統(tǒng)計(jì)員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91,復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清,若統(tǒng)計(jì)員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC=CF=2a,p為AB的中點(diǎn).
(Ⅰ)求證:面FBC∥面EAD;
(Ⅱ)求證:平面PCF⊥平面PDE;
(Ⅲ)求四面體PCEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-1|-|2x+3|,則滿(mǎn)足f(x)≤1的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分別是CC1、C1D1、D1D、DC的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH上或其內(nèi)部運(yùn)動(dòng),且使MN⊥AC.對(duì)于下列命題:
①點(diǎn)M可以與點(diǎn)H重合;
②點(diǎn)M可以與點(diǎn)F重合;
③點(diǎn)M可以在線(xiàn)段FH上;
④點(diǎn)M可以與點(diǎn)E重合.
其中正確命題的序號(hào)是
 
(把你認(rèn)為正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

最近,張師傅和李師傅要將家中閑置資金進(jìn)行投資理財(cái).現(xiàn)有兩種投資方案,且一年后投資盈虧的情況如下:
(1)投資股市:
投資結(jié)果獲利不賠不賺虧損
概  率
1
2
1
8
3
8
(2)購(gòu)買(mǎi)基金:
投資結(jié)果獲利不賠不賺虧損
概  率p
1
3
q
(Ⅰ)當(dāng)p=
1
2
時(shí),求q的值;
(Ⅱ)已知“購(gòu)買(mǎi)基金”虧損的概率比“投資股市”虧損的概率小,求p的取值范圍;
(Ⅲ)已知張師傅和李師傅兩人都選擇了“購(gòu)買(mǎi)基金”來(lái)進(jìn)行投資,假設(shè)三種投資結(jié)果出現(xiàn)的可能性相同,求一年后他們兩人中至少有一人獲利的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),則第5個(gè)等式為
 
;推廣到第n個(gè)等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2x+1(x<0)的反函數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案