【題目】(選做題)[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.
【答案】
(1)
解:曲線C的普通方程為(x+1)2+(y﹣1)2=4,
由x=ρcosθ,y=ρsinθ,得ρ2+2ρcosθ﹣2ρsinθ﹣2=0.
(2)
解:聯(lián)立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,
得ρ2+2ρ(cosα﹣sinα)﹣2=0,
設(shè)A(ρ1,α),B(ρ2,α),
則ρ1+ρ2=2(cosα﹣sinα)=2 ,
由|OM|= ,得|OM|= ,
當(dāng)α= 時(shí),|OM|取最大值 .
【解析】( I)利用平方關(guān)系可得曲線C的普通方程,把x=ρcosθ,y=ρsinθ,代入即可得出.(II)聯(lián)立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,得ρ2+2ρ(cosα﹣sinα)﹣2=0,設(shè)A(ρ1 , α),B(ρ2 , α),可得ρ1+ρ2=2(cosα﹣sinα)=2 ,即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三棱錐P﹣ABC中,VP﹣ABC= ,∠APC= ,∠BPC= ,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P﹣ABC外接球的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式 的解集為( )
A.{x>﹣2011}
B.{x|x<﹣2011}
C.{x|﹣2011<x<0}
D.{x|﹣2016<x<﹣2011}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2 , 由橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成一個(gè)等邊三角形.它的面積為4 .
(1)求橢圓C的方程;
(2)已知?jiǎng)狱c(diǎn)B(m,n)(mn≠0)在橢圓上,點(diǎn)A(0,2 ),直線AB交x軸于點(diǎn)D,點(diǎn)B′為點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn),直線AB′交x軸于點(diǎn)E,若在y軸上存在點(diǎn)G(0,t),使得∠OGD=∠OEG,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足a1b1+a2b2+…+anbn=3﹣ ,求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解各!秶鴮W(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級(jí)全體學(xué)生參加了國學(xué)知識(shí)水平測試,測試成績從高到低依次分為A、B、C、D四個(gè)等級(jí),隨機(jī)調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如圖所示分布圖:
(Ⅰ)試確定圖中實(shí)數(shù)a與b的值;
(Ⅱ)規(guī)定等級(jí)D為“不合格”,其他等級(jí)為“合格”,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若從甲、乙兩!昂细瘛钡膶W(xué)生中各選1名學(xué)生,求甲校學(xué)生成績高于乙校學(xué)生成績的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列 中,
(1)求數(shù)列 的通項(xiàng)公式;
(2)設(shè)數(shù)列 是首項(xiàng)為1,公比為 的等比數(shù)列,求 的前 項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點(diǎn),直線m是以P為中點(diǎn)的弦所在直線,直線l的方程為ax+by=r2 , 那么( )
A.m∥l,且l與圓相交
B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離
D.m⊥l,且l與圓相離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 為定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)在區(qū)間(a+1,+∞)上的單調(diào)性,并用定義法證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com