20.定義在R上的函數(shù)f(x)滿足f(2+x)=f(-x),且在[1,+∞)上為減函數(shù),若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-∞,-$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

分析 根據(jù)條件可得出函數(shù)f(x)關(guān)于x=1對(duì)稱,且在[1,+∞)上為減函數(shù),在(-∞,1)上為增函數(shù),故距離對(duì)稱軸越近的函數(shù)值越大,
得出|m-1|<|1-m-1|,解絕對(duì)值不等式可得.

解答 解:函數(shù)f(x)滿足f(2+x)=f(-x),
∴f(x)=f(-x+2),
∴f(x+1)=f(1-x),
∴函數(shù)f(x)關(guān)于x=1對(duì)稱,
∵在[1,+∞)上為減函數(shù),
∴在(-∞,1)上為增函數(shù),
∵f(1-m)<f(m),
∴|m-1|<|1-m-1|,
∴m>$\frac{1}{2}$.
故選A.

點(diǎn)評(píng) 考查了對(duì)抽象函數(shù)的理解和對(duì)數(shù)學(xué)結(jié)合的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知b,c∈R二次函數(shù)f(x)=x2+2bx+c在區(qū)間(1,5)上有兩個(gè)不同的零點(diǎn),則f(1)•f(5)的取值范圍(0,256).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2c-2acosB=b.
(1)求角A的大。
(2)若△ABC的面積為$\frac{\sqrt{3}}{4}$,且c2+abcosC+a2=4,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,則下列命題不正確的是(  )
A.若m∥n,m⊥α,則n⊥αB.若m⊥α,m?β,則α⊥β
C.若m∥α,α∩β=n,則m∥nD.若m⊥β,m⊥α,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如表是一個(gè)由n2個(gè)正數(shù)組成的數(shù)表,用aij表示第i行第j個(gè)數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48.
(1)求an1和a4n;
(2)設(shè)cn=$\frac{{2{a_{n1}}}}{{{a_{4n}}}}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且滿足(4a-3c)cosB=3bcosC,若a,b,c成等差數(shù)列,則sinA+sinC=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.我國(guó)古代秦九韶算法可計(jì)算多項(xiàng)式anxn+an-1xn-1+…+a1x+a0的值,當(dāng)多項(xiàng)式為x4+4x3+6x2+4x+1時(shí),求解它的值所反映的程序框圖如圖所示,當(dāng)x=1時(shí)輸出的結(jié)果為(  )
A.15B.5C.16D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=0,那么向量$\overrightarrow{a}$,$\overrightarrow$的夾角為(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$=n2(n≥1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anan+1,Sn為數(shù)列{bn}的前n項(xiàng)和.存在正整數(shù)n,使得Sn>λ-$\frac{1}{2}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案