分析 由正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理化簡已知等式可得4sinAcosB=3sinA,結(jié)合sinA≠0,可得:cosB=$\frac{3}{4}$,從而可求sinB,由2b=a+c,利用正弦定理即可計算得解.
解答 解:在△ABC中,∵(4a-3c)cosB=3bcosC,
∴4sinAcosB-3sinCcosB=3sinBcosC,可得:4sinAcosB=3sin(B+C)=3sinA,
∵sinA≠0,可得:cosB=$\frac{3}{4}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{7}}{4}$,
∵a,b,c成等差數(shù)列,2b=a+c,
∴2sinB=sinA+sinC=2×$\frac{\sqrt{7}}{4}$=$\frac{\sqrt{7}}{2}$.
故答案為:$\frac{\sqrt{7}}{2}$.
點評 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0<0,x02<2${\;}^{{x}_{0}}$ | B. | ?x0≥0,x02≥2${\;}^{{x}_{0}}$ | ||
C. | ?x0<0,x02≥2${\;}^{{x}_{0}}$ | D. | ?x0≥0,x02<2${\;}^{{x}_{0}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (-∞,-$\frac{1}{2}$) | D. | (-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
觀看“導(dǎo)數(shù)的應(yīng)用” 視頻人數(shù) | 觀看“概率的應(yīng)用” 視頻人數(shù) | 總計 | |
A班 | |||
B班 | |||
總計 |
P(x2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 17 | C. | 22 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<-1} | B. | {x|x>1} | C. | {x|x<-1或x>1} | D. | {x|-1<x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com