分析 設R(x0,y0),則$\left\{\begin{array}{l}{{{x}_{0}}^{2}+{{y}_{0}}^{2}=1}\\{({x}_{0}-t)^{2}+{{y}_{0}}^{2}=1}\end{array}\right.$,解得x0=$\frac{t}{2}$,${{y}_{0}}^{2}$=1-$\frac{{t}^{2}}{4}$,于是可得直線RM的方程為:y=-$\frac{{y}_{0}}{{x}_{0}-t}$(x-t).與圓O:x2+y2=1得N點橫坐標為$\frac{t(3-{t}^{2})}{2}$,繼而可得NQ的表達式,可求得線段NQ長的最小值.
解答 解:設R(x0,y0),則$\left\{\begin{array}{l}{{{x}_{0}}^{2}+{{y}_{0}}^{2}=1}\\{({x}_{0}-t)^{2}+{{y}_{0}}^{2}=1}\end{array}\right.$,解得x0=$\frac{t}{2}$,${{y}_{0}}^{2}$=1-$\frac{{t}^{2}}{4}$.
直線RM的方程為:y=-$\frac{{y}_{0}}{{x}_{0}-t}$(x-t).
與圓O:x2+y2=1得N點橫坐標為$\frac{t(3-{t}^{2})}{2}$,
所以NQ=$\sqrt{(\frac{2t-{t}^{3}}{2})2}+1-(\frac{3t-{t}^{3}}{2})^{2}$=$\frac{1}{2}\sqrt{2{t}^{4}-5{t}^{2}+4}$,
所以當t2=$\frac{5}{4}$,即t=$\frac{\sqrt{5}}{2}$時,NQ最小為$\frac{\sqrt{14}}{8}$.
故答案為:$\frac{\sqrt{14}}{8}$.
點評 本題考查直線與圓的方程的綜合應用、直線的點斜式方程,突出考查方程思想與綜合運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=cosx | B. | y=x2+1 | C. | $y={log_{\frac{1}{2}}}$|x| | D. | $y={(\frac{1}{2})^x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com