【題目】已知△ABC的三邊長成等差數(shù)列,公差為2,且最大角的正弦值為 ,則這個三角形的周長是(
A.9
B.12
C.15
D.18

【答案】C
【解析】解:不妨設(shè)三角形的三邊分別為a、b、c,且a>b>c>0,

∵由于公差為d=2,三個角分別為、A、B、C,

∴a﹣b=b﹣c=2,即:a=c+4,b=c+2,

∵sinA= ,

∴A=60°或120°.

∵若A=60°,由于三條邊不相等,則必有角大于A,矛盾,

∴A=120°.

∴cosA= = = =﹣

∴c=3,

∴b=c+2=5,a=c+4=7.

∴這個三角形的周長=3+5+7=15.

故選:C.

設(shè)三角形的三邊分別為a、b、c,且a>b>c>0,由于公差為d=2,三個角分別為、A、B、C,則a﹣b=b﹣c=2,a=c+4,b=c+2,因?yàn)閟inA= ,所以A=60°或120°.若A=60°,因?yàn)槿龡l邊不相等,則必有角大于A,矛盾,故A=120°.由余弦定理能求出三邊長,從而得到這個三角形的周長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π]
(1)若 ,求x的值;
(2)記f(x)= ,求f(x)的最大值和最小值以及對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)市場需要,某地準(zhǔn)備建一個圓形生豬儲備基地(如右圖),它的附近有一條公路,從基地中心O處向東走1 km是儲備基地的邊界上的點(diǎn)A , 接著向東再走7 km到達(dá)公路上的點(diǎn)B;從基地中心O向正北走8 km到達(dá)公路的另一點(diǎn)C.現(xiàn)準(zhǔn)備在儲備基地的邊界上選一點(diǎn)D , 修建一條由D通往公路BC的專用線DE , 求DE的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①“x∈R,x2﹣3x+3=0”的否定是真命題; ②“ ”是“2x2﹣5x﹣3<0”必要不充分條件;
③“若xy=0,則x,y中至少有一個為0”的否命題是真命題;
④曲線 與曲線 有相同的焦點(diǎn);
⑤過點(diǎn)(1,3)且與拋物線y2=4x相切的直線有且只有一條.
其中是真命題的有:(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4sinxcos(x+ )+m(x∈R,m為常數(shù)),其最大值為2. (Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若f(α)=﹣ (﹣ <α<0),求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+cos2x.
(1)當(dāng)x∈[0, ]時,求f(x)的取值范圍;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=1,an+1+(﹣1)nan=2n﹣1.
(1)求a2 , a4 , a6;
(2)設(shè)bn=a2n , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求S2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2+ax+1(a∈R). (Ⅰ)當(dāng)a= 時,求不等式f(x)<3的解集;
(Ⅱ)當(dāng)0<x<2時,不等式f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求關(guān)于x的不等式f(x)﹣ a2﹣1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夾角為銳角,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案