16.已知直線l:y=kx+b與拋物線x2=2py(常數(shù)p>0)相交于不同的兩點A、B,線段AB的中點為D,與直線l:y=kx+b平行的切線的切點為C.分別過A、B作拋物線的切線交于點E,則關(guān)于點C、D、E三點橫坐標(biāo)xc、xD,xE的表述正確的是( 。
A.xD<xC<xEB.xC=xD>xEC.xD=xc<xED.xC=xD=xE

分析 設(shè)A$({x}_{1},\frac{{x}_{1}^{2}}{2p})$,B$({x}_{2},\frac{{x}_{2}^{2}}{2p})$.直線方程與拋物線方程聯(lián)立,化為:x2-2pkx-2pb=0,利用根與系數(shù)的關(guān)系、中點坐標(biāo)公式可得xD.對拋物線x2=2py兩邊求導(dǎo)可得:y′=$\frac{x}{p}$.可得切線方程,進而得到交點E的橫坐標(biāo),由題意可得:k=$\frac{{x}_{C}}{p}$,即可得出結(jié)論.

解答 解:設(shè)A$({x}_{1},\frac{{x}_{1}^{2}}{2p})$,B$({x}_{2},\frac{{x}_{2}^{2}}{2p})$.
聯(lián)立$\left\{\begin{array}{l}{y=kx+b}\\{{x}^{2}=2py}\end{array}\right.$,化為:x2-2pkx-2pb=0,
△>0,
∴x1+x2=2pk,
可得xD=$\frac{{x}_{1}+{x}_{2}}{2}$=pk.
對拋物線x2=2py兩邊求導(dǎo)可得:y′=$\frac{x}{p}$.
可得經(jīng)過點A的切線方程:y-$\frac{{x}_{1}^{2}}{2p}$=$\frac{{x}_{1}}{p}$(x-x1),
經(jīng)過點B的切線方程:y-$\frac{{x}_{2}^{2}}{2p}$=$\frac{{x}_{2}}{p}$(x-x2),
聯(lián)立解得xE=$\frac{{x}_{1}+{x}_{2}}{2}$=xD
經(jīng)過點C的切線的斜率為$\frac{{x}_{C}}{p}$,
由題意可得:k=$\frac{{x}_{C}}{p}$,∴xC=pk.
綜上可得:xC=xE=xD
故選:D.

點評 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與拋物線相交相切問題、導(dǎo)數(shù)的幾何意義,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一信號燈閃爍時每次等可能的出現(xiàn)紅色或綠色信號,在該信號燈閃爍三次中,已知有一次是綠色信號,則至少有一次是紅色信號的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ln(x-1)-k(x-1)+1(k∈R)
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)≤0對定義域所有x恒成立,求k的取值范圍;
(3)n≥2,n∈N時證明 ln2+ln3+…lnn≤$\frac{n(n-1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$f(x)=\frac{lnx}{1+x}-lnx,f(x)$在x=x0處取最大值,以下結(jié)論:
①f(x0)<x0 ②f(x0)=x0 ③f(x0)>x0 ④$f({x_0})<\frac{1}{2}$   ⑤$f({x_0})>\frac{1}{2}$
其中正確的序號為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線x+2y-2=0過拋物線y2=2px的焦點,則p=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列4個命題:
①在△ABC中,“cosA+sinA=cosB+sinB”是“A=B”的充要條件;
②b2=ac是a,b,c成等比數(shù)列的充要條件;
③若loga2<logb2<0,則a>b;
④若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈($\frac{π}{4}$,$\frac{π}{2}$),則f(sinθ)>f(cosθ);  
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過x軸上一定點M作直線l與拋物線y2=4x交于P,Q兩點,若$\overrightarrow{OP}•\overrightarrow{OQ}=5$,則M點的坐標(biāo)為(5,0)或(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若arcsinx-arccosx=$\frac{π}{6}$,則x=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案