分析 利用三角形內(nèi)角和定理化簡即可得到答案!
解答 解:∵B+A+C=π,
∴A+C=π-B
那么cos(A+C)=cos(π-B)=-cosB.
則:cos2B+3cos(A+C)+2=0
?cos2B-3cosB+2=0
?2cos2B-1-3cosB+2=0
?2cos2B-3cosB+1=0
?(2cosB-1)(cosB-1)=0
解得:cosB=1,此時(shí)B=0°,不符合題意.
或cosB=$\frac{1}{2}$,此時(shí)B=60°,符合題意.
那么:sinB=sin60°=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.
點(diǎn)評 本題考查了三角形內(nèi)角和定理的運(yùn)用和化簡能力.特殊角的記憶!屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | ±$\frac{1}{5}$ | C. | $\frac{7}{5}$ | D. | ±$\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{2}{5}$,1] | B. | [$\frac{2}{3}$,1] | C. | [$\frac{1}{2}$,$\frac{3}{2}$] | D. | [$\frac{2}{5}$,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com