19.函數(shù)f(x)=$\sqrt{2sinx-\sqrt{3}}$的定義域是[$\frac{π}{3}+2kπ,\frac{2π}{3}+2kπ$],k∈Z.

分析 由根式內(nèi)部的代數(shù)式大于等于0,求解三角不等式得答案.

解答 解:要使原函數(shù)有意義,則$2sinx-\sqrt{3}≥0$,
∴sinx$≥\frac{\sqrt{3}}{2}$,則$\frac{π}{3}+2kπ≤x≤\frac{2π}{3}+2kπ,k∈Z$.
∴函數(shù)f(x)=$\sqrt{2sinx-\sqrt{3}}$的定義域是[$\frac{π}{3}+2kπ,\frac{2π}{3}+2kπ$],k∈Z.
故答案為:[$\frac{π}{3}+2kπ,\frac{2π}{3}+2kπ$],k∈Z.

點(diǎn)評 本題考查函數(shù)的定義域及其求法,考查了三角不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC中,角A,B,C的對邊分別為a,b,c,且2acosB=ccosB+bcosC
(1)求角B的大小;
(2)設(shè)向量$\overrightarrow m$=(cosA,cos2A),$\overrightarrow n$=(12,-5),邊長a=4,求當(dāng)$\overrightarrow m•\overrightarrow n$取最大值時(shí),三角形的面積S△ABC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A(x1,y1).B(x2,y2),P是直線上一點(diǎn),$\frac{AP}{PB}$=2,則P點(diǎn)坐標(biāo)為($\frac{{x}_{1}+{2x}_{2}}{3}$,$\frac{{y}_{1}+{2y}_{2}}{3}$)或(2x2-x1,2y2-y1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,若cos2B+3cos(A+C)+2=0,則sinB的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題p:“?x∈R,2x-1>0”,命題q:“函數(shù)f(x)=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$]最小值為2,則下列命題正確的是(  )
A.命題“p∧q”是真命題B.命題“p∧(¬q)”是真命題
C.命題“(¬p)∧q”是真命題D.命題“(¬p)∧(¬q)”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=4cosωxsin(ωx+$\frac{2π}{3}$)-$\sqrt{3}$的最小正周期為π.
(1)求f(x)在[-π,π]上的單調(diào)增區(qū)間;
(2)若存在x∈[0,$\frac{π}{6}$],使f(x-$\frac{π}{4}$)>|m-2|成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x)=ax(x+2)(x-a)(a<0),若函數(shù)f(x)在x=-2處取到極小值,則實(shí)數(shù)a的取值范圍是a<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合U=Z,S={1,2,3,4,5},T={1,3,5,7,9},則圖中陰影部分表示的集合是(  )
A.{2,4}B.{7,9}C.{1,3,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.化簡lg52+lg2lg50+lg22=2.

查看答案和解析>>

同步練習(xí)冊答案