【題目】某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按 分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中的

(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機(jī)抽取3株,設(shè)隨機(jī)變量表示所抽取的3株高度在 內(nèi)的株數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

【答案】(1);(2).

【解析】分析:(1)由題得,再利用頻率和為1求x的值.(2)先求出的可能取值為1,2,3,再求其對應(yīng)的概率,再列分布列求期望.

詳解:(1)由題意可知,樣本容量

.

(2)由題意可知,高度在[80,90)內(nèi)的株數(shù)為5,高度在[90,100]內(nèi)的株數(shù)為2,

共7株.抽取的3株中高度在[80,90)內(nèi)的株數(shù)的可能取值為1,2,3,

,

1

2

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若 ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球n個.若從袋子中隨機(jī)抽取1個小球,取到標(biāo)號為2的小球的概率是

1)求n的值;

2)從袋子中不放回地隨機(jī)抽取2個小球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b

為事件A,求事件A的概率;

在區(qū)間內(nèi)任取2個實(shí)數(shù),求事件恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P-ABCD的底面為等腰梯形, AB∥CD,AC⊥BD,垂足為H, PH是四棱錐的高,E為AD中點(diǎn),設(shè)

1)證明:PE⊥BC;

2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點(diǎn),則f(x)的極小值為( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f′(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對應(yīng)的自變量的值)
(Ⅰ)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數(shù)的所有極值之和不小于﹣ ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個算法流程圖,當(dāng)輸入的x=5時(shí),那么運(yùn)行算法流程圖輸出的結(jié)果是(
A.10
B.20
C.25
D.35

查看答案和解析>>

同步練習(xí)冊答案