【題目】若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點,則f(x)的極小值為( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1

【答案】A
【解析】解:函數(shù)f(x)=(x2+ax﹣1)ex﹣1
可得f′(x)=(2x+a)ex﹣1+(x2+ax﹣1)ex﹣1 ,
x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點,
可得:﹣4+a+(3﹣2a)=0.
解得a=﹣1.
可得f′(x)=(2x﹣1)ex﹣1+(x2﹣x﹣1)ex﹣1
=(x2+x﹣2)ex﹣1 , 函數(shù)的極值點為:x=﹣2,x=1,
當(dāng)x<﹣2或x>1時,f′(x)>0函數(shù)是增函數(shù),x∈(﹣2,1)時,函數(shù)是減函數(shù),
x=1時,函數(shù)取得極小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.
故選:A.
【考點精析】通過靈活運用基本求導(dǎo)法則和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo);一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C與A,B兩點,圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標(biāo)原點O在圓M上;
(Ⅱ)設(shè)圓M過點P(4,﹣2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一個平面內(nèi),向量 , , 的模分別為1,1, , 的夾角為α,且tanα=7, 的夾角為45°.若 =m +n (m,n∈R),則m+n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進(jìn)行統(tǒng)計,按 分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中的

(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機(jī)抽取3株,設(shè)隨機(jī)變量表示所抽取的3株高度在 內(nèi)的株數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時,討論的單調(diào)性;

(2)設(shè),當(dāng)時,若對任意,存在使,求實數(shù)取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣ )e﹣x(x≥ ).
(Ⅰ)求f(x)的導(dǎo)函數(shù);
(Ⅱ)求f(x)在區(qū)間[ ,+∞)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖多面體, 兩兩垂直,, , ,

.

() 若點在線段,求證: 平面;

()求直線與平面所成的角的正弦值;

()求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y= 的定義域為A,函數(shù)y=ln(1﹣x)的定義域為B,則A∩B=(  )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點,,,分別為橢圓: 的左、右頂點,下頂點和右焦點,直線過點,與橢圓交于點,已知當(dāng)直線軸時,.

(1)求橢圓的離心率;

(2)若當(dāng)點重合時,點到橢圓的右準(zhǔn)線的距離為上.

①求橢圓的方程;

②求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案