【題目】在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面積.
【答案】
(1)
解:∠A=60°,c= a,
由正弦定理可得sinC= sinA= × = ,
(2)
解:a=7,則c=3,
∴C<A,
由(1)可得cosC= ,
∴sinB=sin(A+C)=sinAcosC+cosAsinC= × + × = ,
∴S△ABC= acsinB= ×7×3× =6 .
【解析】(1.)根據正弦定理即可求出答案,
(2.)根據同角的三角函數的關系求出cosC,再根據兩角和正弦公式求出sinB,根據面積公式計算即可.
【考點精析】根據題目的已知條件,利用兩角和與差的正弦公式和正弦定理的定義的相關知識可以得到問題的答案,需要掌握兩角和與差的正弦公式:;正弦定理:.
科目:高中數學 來源: 題型:
【題目】對于給定的正整數k,若數列{an}滿足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan對任意正整數n(n>k)總成立,則稱數列{an}是“P(k)數列”.
(Ⅰ)證明:等差數列{an}是“P(3)數列”;
(Ⅱ)若數列{an}既是“P(2)數列”,又是“P(3)數列”,證明:{an}是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在同一個平面內,向量 , , 的模分別為1,1, , 與 的夾角為α,且tanα=7, 與 的夾角為45°.若 =m +n (m,n∈R),則m+n= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調遞增區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某園林基地培育了一種新觀賞植物,經過了一年的生長發(fā)育,技術人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進行統(tǒng)計,按 分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數據).
(1)求樣本容量和頻率分布直方圖中的
(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機抽取3株,設隨機變量表示所抽取的3株高度在 內的株數,求隨機變量的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體中, 兩兩垂直,且, , ,
.
(Ⅰ) 若點在線段上,且,求證: 平面;
(Ⅱ)求直線與平面所成的角的正弦值;
(Ⅲ)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正△ABC內接于半徑為2的圓O,點P是圓O上的一個動點,則 的取值范圍是( )
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com