若變量x、y滿足約束條件
x-y≥-1
x+y≥1
3x-y≤3
,則目標函數(shù)z=2x+3y的最小值是
 
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應用
分析:由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合求出最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答: 解:由約束條件
x-y≥-1
x+y≥1
3x-y≤3
作出可行域如圖,

化目標函數(shù)z=2x+3y為y=-
2
3
x+
z
3
,
由圖可知,當直線y=-
2
3
x+
z
3
過A(1,0)時直線在y軸上的截距最小,z最小.
則z=2×1+3×0=2.
故答案為:2.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設O是坐標原點,F(xiàn)是拋物線y2=4x的焦點,A是拋物線上的一點,
FA
與x軸正向的夾角為60°,則|
OA
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+ax+b,集合A={x|f(x)=x}={a},求f(x)在[t,t+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個體積為10的空間幾何體的三視圖,則圖中x的值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P1,P2,…,P8拋物線y2=4x上的一點,它們的橫坐標依次為x1,x2,…x8,F(xiàn)是拋物線的焦點,若x1+x2+…+x8=10,則絕對值|P1F|+|P2F|+…+|P8F|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①△ABC的三邊分別為a,b,c,則該三角形是等邊三角形的充要條件為a2+b2+c2=ab+ac+bc;
②數(shù)列{an}的前n項和為Sn,則Sn=An2+Bn是數(shù)列{an}為等差數(shù)列的必要不充分條件;
③在△ABC中,A=B是sin A=sin B的充分必要條件;
④已知a1,b1,c1,a2,b2,c2都是不等于零的實數(shù),關(guān)于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分別為P,Q,
a1
a2
=
b1
b2
=
c1
c2
是P=Q的充分必要條件,其中正確的命題是( 。
A、①④B、①②③
C、②③④D、①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且2c•cosB=2a+b,若△ABC的面積為S=
3
2
c,則ab的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x•lg(x+2)-1的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-2x-8
的定義域為集合A,函數(shù)g(x)=x2-2x+a,x∈[0,4]的值域為集合B,若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案