分析 分析知如兩船到達(dá)的時間間隔超過了停泊的時間則不需要等待,要求一艘船?坎次粫r必須等待一段時間的概率;即計算一船到達(dá)的時間恰好另一船還沒有離開,此即是所研究的事件.
解答 解:設(shè)甲船在x點到達(dá),乙船在y點到達(dá),必須等待的事件需要滿足如下條件:
$\left\{\begin{array}{l}{0≤x≤24}\\{0≤y≤24}\\{y-x≤2}\\{x-y≤4}\end{array}\right.$,
畫出不等式組表示的平面區(qū)域如圖所示;
所以p(A)=1-$\frac{\frac{1}{2}×20×20+\frac{1}{2}×22×22}{24×24}$=$\frac{67}{288}$;
所以一艘船?坎次粫r必須等待一段時間的概率是$\frac{67}{288}$.
故答案為:$\frac{67}{288}$.
點評 本題考查了幾何概型的應(yīng)用問題,解題的關(guān)鍵是得出所給的事件對應(yīng)的約束條件及作出符合條件的圖象,由圖形的測度得出相應(yīng)的概率.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{20}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x| | B. | y=1-x | C. | y=$\frac{1}{x}$ | D. | y=-x2+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+y=0 | B. | x+y+3=0 | C. | x-y+3=0 | D. | x+y+3=0或2x+y=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com