【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.

【答案】1;(2)證明見解析

【解析】

1)求得的導(dǎo)函數(shù),對(duì)分成三種情況,結(jié)合上存在極大值,求得的取值范圍.

2)首先根據(jù)軸是曲線的一條切線求得的值,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得在區(qū)間上的最小值為,由此證得,從而證得不等式成立.

1)解:,令,得,.

當(dāng)時(shí),,單調(diào)遞增,無極值,不合題意;

當(dāng)時(shí),處取得極小值,在處取得極大值,

,又,所以;

當(dāng)時(shí),處取得極大值,在處取得極小值,

,又,所以.

綜上,的取值范圍為.

2)證明:由題意得,或,即(不成立),或,

解得.

設(shè)函數(shù),

當(dāng)時(shí),;當(dāng)時(shí),.

所以處取得極小值,且極小值為.

,所以當(dāng)時(shí),,

故當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為把滿足條件的所有數(shù)列構(gòu)成的集合記為.

(1)若數(shù)列通項(xiàng)為,求證;

(2)若數(shù)列是等差數(shù)列,,的取值范圍;

(3)若數(shù)列的各項(xiàng)均為正數(shù),數(shù)列中是否存在無窮多項(xiàng)依次成等差數(shù)列,若存在,給出一個(gè)數(shù)列的通項(xiàng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面底面,

(Ⅰ)求證:平面

(Ⅱ),,與平面所成的角為求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)圓內(nèi)有6000個(gè)點(diǎn),其中任三點(diǎn)都不共線;①能否把這個(gè)圓分成2000塊,使每塊恰含有三個(gè)點(diǎn),如何分?②若每塊中三點(diǎn)滿足:兩兩間的距離皆為整數(shù)且不超過9,則以每塊中的三點(diǎn)為頂點(diǎn)作三角形,這些三角形中大小完全一樣的三角形至少有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生的課外文化生活,某中學(xué)積極探索開展課外文體活動(dòng)的新途徑及新形式,取得了良好的效果.為了調(diào)查學(xué)生的學(xué)習(xí)積極性與參加文體活動(dòng)是否有關(guān),學(xué)校對(duì)200名學(xué)生做了問卷調(diào)查,列聯(lián)表如下:

參加文體活動(dòng)

不參加文體活動(dòng)

合計(jì)

學(xué)習(xí)積極性高

80

學(xué)習(xí)積極性不高

60

合計(jì)

200

已知在全部200人中隨機(jī)抽取1人,抽到學(xué)習(xí)積極性不高的學(xué)生的概率為.

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)是否有99.9%的把握認(rèn)為學(xué)習(xí)積極性高與參加文體活動(dòng)有關(guān)?請(qǐng)說明你的理由;

3)若從不參加文體活動(dòng)的同學(xué)中按照分層抽樣的方法選取5人,再從所選出的5人中隨機(jī)選取2人,求至少有1人學(xué)習(xí)積極性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】探月工程“嫦娥四號(hào)”探測器于2018128日成功發(fā)射,實(shí)現(xiàn)了人類首次月球背面軟著陸.以嫦娥四號(hào)為任務(wù)圓滿成功為標(biāo)志,我國探月工程四期和深空探測工程全面拉開序幕.根據(jù)部署,我國探月工程到2020年前將實(shí)現(xiàn)“繞、落、回”三步走目標(biāo).為了實(shí)現(xiàn)目標(biāo),各科研團(tuán)隊(duì)進(jìn)行積極的備戰(zhàn)工作.某科研團(tuán)隊(duì)現(xiàn)正準(zhǔn)備攻克甲、乙、丙三項(xiàng)新技術(shù),甲、乙、丙三項(xiàng)新技術(shù)獨(dú)立被攻克的概率分別為,若甲、乙、丙三項(xiàng)新技術(shù)被攻克,分別可獲得科研經(jīng)費(fèi)萬,萬,.若其中某項(xiàng)新技術(shù)未被攻克,則該項(xiàng)新技術(shù)沒有對(duì)應(yīng)的科研經(jīng)費(fèi).

1)求該科研團(tuán)隊(duì)獲得萬科研經(jīng)費(fèi)的概率;

2)記該科研團(tuán)隊(duì)獲得的科研經(jīng)費(fèi)為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學(xué)家的統(tǒng)計(jì),人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時(shí)間周期分別為23天、28天、33.每個(gè)節(jié)律周期又分為高潮期、臨界日和低潮期三個(gè)階段.以上三個(gè)節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天計(jì)算).

1)請(qǐng)寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);

2)試判斷小英在2019422日三種節(jié)律各處于什么階段,當(dāng)日小英是否適合參加某項(xiàng)體育競技比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種工業(yè)機(jī)器生產(chǎn)商,對(duì)一次性購買2臺(tái)機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:

方案一:交納延保金700元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)200元;

方案二:交納延保金1000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)100元.

某工廠準(zhǔn)備一次性購買2臺(tái)這種機(jī)器.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)購買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺(tái)數(shù)

5

20

10

15

以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率.記X表示這2臺(tái)機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù).

1)求X的分布列;

2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),工廠選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)在區(qū)間[1,2]上的最大值;

(2)設(shè)在(0,2)內(nèi)恰有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案