【題目】某種工業(yè)機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:

方案一:交納延保金700元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費200元;

方案二:交納延保金1000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費100元.

某工廠準備一次性購買2臺這種機器.現(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺數(shù)

5

20

10

15

以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率.記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù).

1)求X的分布列;

2)以所需延保金及維修費用的期望值為決策依據(jù),工廠選擇哪種延保方案更合算?

【答案】1)詳見解析;(2)選擇延保方案一較合算.

【解析】

1所有可能的取值為0,12,3,4,5,6,計算概率得到分布列.

2)分別計算所需費用的分布列,計算數(shù)學期望,比較大小得到答案.

1;;.

所有可能的取值為01,2,3,4,56

,,,,,,

的分布列為:

0

1

2

3

4

5

6

2)選擇延保方案一,所需費用元的分布列為:

700

900

1100

1300

1500

P

(元).

選擇延保方案二,所需費用元的分布列為:

1000

1100

1200

P

(元).

,∴該工廠選擇延保方案一較合算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像與軸的相鄰兩交點的坐標分別為,,且當時,有最小值.

1)求函數(shù)的解析式及單調(diào)遞減區(qū)間;

2)將的圖像向右平移個單位,再將所得圖像的橫坐標伸長為原來的倍(縱坐標不變),得到函數(shù)的圖像,若關(guān)于的方程在區(qū)間上有兩個解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的有( )

①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;②在中,若,則為直角三角形;③若為銳角三角形的兩個內(nèi)角,則;④若為數(shù)列的前項和,則此數(shù)列的通項.

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1an=0(nN*),且,成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

2)令bn=(nN*),求數(shù)列{bn}的前n項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為圓上的動點,點軸上的投影為,點為線段AB的中點,設點的軌跡為

1)求點的軌跡的方程;

2)已知直線交于兩點,,若直線的斜率之和為3,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知銳角ABC中,內(nèi)角所對應的邊分別為,且滿足:,,則的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,是橢圓的左、右焦點,橢圓過點.

(1)求橢圓的方程;

(2)過點的直線(不過坐標原點)與橢圓交于,兩點,且點軸上方,軸下方,,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是BCCD的中點,GEF的中點,現(xiàn)在沿AEAFEF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有(  )

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

同步練習冊答案