考點(diǎn):數(shù)列遞推式,等比關(guān)系的確定
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由a
n+1=
S
n,知S
n-S
n-1=
-
,從而
=
,進(jìn)而
=,(n≥2),由此能證明{
}是首項(xiàng)為1,公比為2的等比數(shù)列.
(2)由(1)可知S
n=n•2
n-1,a
n=(n+1)•2
n-2.由此能證明S
n+1=(n+1)•2
n=4a
n.
解答:
證明:(1)∵數(shù)列{a
n}的前n項(xiàng)和為S
n,a
1=1,a
n+1=
S
n,
∴S
n=
,S
n-1=
,n≥2
∴a
n=S
n-S
n-1=
-
,
即2n×
=
,
∵n≠0,∴
=
,
∴
=,(n≥2)
即
:
=2,
n=1時(shí),
=
=1,
∴{
}是首項(xiàng)為1,公比為2的等比數(shù)列.
(2)∵{
}是首項(xiàng)為1,公比為2的等比數(shù)列,
∴
=2
n-1,∴S
n=n•2
n-1,
∴a
n+1=
S
n=
n•2n-1×=(n+2)•2
n-1,
∴a
n=(n+1)•2
n-2.
∴S
n+1=(n+1)•2
n=4a
n.
點(diǎn)評(píng):本題考查等比數(shù)列的證明,考查Sn+1=4an的證明,解題時(shí)要認(rèn)真審題,注意構(gòu)造法的合理運(yùn)用,是中檔題.