14.直線ax+by=ab(a>0,b<0)不經(jīng)過第四象限.

分析 求出直線在x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)a>0且b<0,得直線交x軸于負(fù)半軸,y軸于正半軸.由此可得到直線經(jīng)過的象限,得到本題答案.

解答 解:對(duì)于直線ax+by=ab,
令x=0,得y=a;令y=0,得x=b,
∴直線ax+by=ab交x軸于A(b,0),交y軸于點(diǎn)B(0,a),
∵a>0,b<0,
得點(diǎn)A在x軸負(fù)半軸,點(diǎn)B在y軸正半軸,
由此可得,直線ax+by=ab經(jīng)過一、二、三象限,不經(jīng)過第四象限,
故答案為:四.

點(diǎn)評(píng) 本題給出含有字母參數(shù)的直線一般式方程,求直線所經(jīng)過的象限.著重考查了直線的基本量與基本形式的知識(shí)點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知M={x|($\frac{1}{2}$)x<2},N={x|log2x<1},則M∩N=(  )
A.{x|x>-1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a為常數(shù),函數(shù)$f(x)=xlnx-\frac{1}{2}a{x^2}$,
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的最小值;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2
①求實(shí)數(shù)a的取值范圍;
②求證:$f({x_1})<-\frac{1}{e}$且x1x2>1(其中e為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點(diǎn)是F,點(diǎn)D(1,y0)是拋物線上的點(diǎn),且|DF|=2.
(I)求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)過定點(diǎn)M(m,0)(m>0)的直線與拋物線C交于A,B兩點(diǎn),與y軸交于點(diǎn)N,且滿足:$\overrightarrow{NA}$=λ$\overrightarrow{AM}$,$\overrightarrow{NB}$=μ$\overrightarrow{BM}$.
(i)當(dāng)m=$\frac{p}{2}$時(shí),求證:λ+μ為定值;
(ii)若點(diǎn)R是直線l:x=-m上任意一點(diǎn),三條直線AR,BR,MR的斜率分別為kAR,kBR,kMR,問是否存在常數(shù)t,使得.kAR+kBR=t•kMR.恒成立?若存在求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2-lnx(a∈R)
(1)若函數(shù)y=f(x)圖象上點(diǎn)(1,f(1))處的切線方程y=x+b(b∈R),求實(shí)數(shù)a,b的值;
(2)若y=f(x)在x=2處取得極值,求函數(shù)f(x)在區(qū)間[$\frac{1}{e}$,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.比較30.2與log30.2的大小,按從小到大的順序?yàn)閘og30.2<30.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ax}{4{x}^{2}+16}$,g(x)=($\frac{1}{2}$)|x-a|,其中a∈R.
(1)若y=g(x)在[1,$\frac{3}{2}$]上的最大值為$\frac{\sqrt{2}}{2}$,求實(shí)數(shù)a的值;
(2)設(shè)函數(shù)p(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{g(x),x<2}\end{array}\right.$,若對(duì)任意x1∈[2,+∞],總存在唯一的x2∈(-∞,2),使得p(x1)=p(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知不等式|a-2x|>x-1,對(duì)任意x∈[1,2]恒成立,則a的取值范圍為(-∞,2)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=cos(πx-$\frac{π}{3}$)的最小正周期為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案