9.廈門日報訊,2016年5月1日上午,廈門海洋綜合行政執(zhí)法支隊在公務(wù)碼頭啟動了2016年休漁監(jiān)管執(zhí)法的首日行動,這標志著廈門海域正式步入為期4個半月的休漁期.某小微企業(yè)決定囤積一些冰鮮產(chǎn)品,銷售所囤積魚品的凈利潤y萬元與投入x萬元之間近似滿足函數(shù)關(guān)系:
f(x)=$\left\{\begin{array}{l}{2{x}^{2}-(2ln2)•x,0<x<2}\\{alnx-\frac{1}{4}{x}^{2}+\frac{9}{2}x,2≤x≤15}\end{array}\right.$
若投入2萬元,可得到凈利潤為5.2萬元.
(1)試求該小微企業(yè)投入多少萬元時,獲得的凈利潤最大;
(2)請判斷該小微企業(yè)是否會虧本,若虧本,求出投入資金的范圍;若不虧本,請說明理由(參考數(shù)據(jù):ln2=0.7,ln15=2.7)

分析 (1)由題意可得f(2)=5.2,解得a=-4,討論2≤x≤15時,求得導(dǎo)數(shù)和單調(diào)區(qū)間、極值和最值;由0<x<2時,f(x)的單調(diào)性可得f(x)的最大值;
(2)討論0<x<2時,f(x)<0的x的范圍,由f(x)在[2,15]的端點的函數(shù)值,可得f(x)>0,即可判斷企業(yè)虧本的x的范圍.

解答 解:(1)由題意可知,當x=2時,f(2)=5.2,
即有aln2-$\frac{1}{4}$×22+$\frac{9}{2}$×2=5.2,解得a=-4.
則f(x)=$\left\{\begin{array}{l}{2{x}^{2}-(2ln2)x,0<x<2}\\{-4lnx-\frac{1}{4}{x}^{2}+\frac{9}{2}x,2≤x≤15}\end{array}\right.$.
當2≤x≤15時,f(x)=-4lnx-$\frac{1}{4}$x2+$\frac{9}{2}$x,
f′(x)=-$\frac{4}{x}$-$\frac{1}{2}$x+$\frac{9}{2}$=-$\frac{(x-1)(x-8)}{2x}$,
當2<x<8時,f′(x)>0,f(x)遞增;
當8<x<15時,f′(x)<0,f(x)遞減.
當2≤x≤15時,f(x)max=f(8)=-4ln8-16+36=11.6.
當0<x<2時,f(x)<2×4-(2ln2)×2=5.2.
故該小微企業(yè)投入8萬元時,獲得的凈利潤最大;
(2)當0<x<2時,2x2-(2ln2)x<0,
解得0<x<ln2,該企業(yè)虧本;
當2≤x≤15時,f(2)=5.2,f(15)=-4ln15-$\frac{1}{4}$×152+$\frac{9}{2}$×15=0.45>0,
則f(x)min=f(15)=0.45>0,
綜上可得,0<x<ln2,即0<x<0.7時,該企業(yè)虧本.

點評 本題考查導(dǎo)數(shù)在實際問題中的運用:求最值,考查化簡整理的運算能力,正確求導(dǎo)是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,AB是半圓O的直徑,P在AB的延長線上,PD與半圓O相切于點C,AD⊥PD,若PC=2,PB=1,則CD=1.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知矩陣M=$[\begin{array}{l}{2}&{0}\\{0}&{1}\end{array}]$,向量$\overrightarrow{β}$=$[\begin{array}{l}{1}\\{7}\end{array}]$,試求M50$\overrightarrow{β}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,AB,D1C的中點分別是M,N
(1)求證:MN⊥CD;
(2)求異面直線BD1與MN所成角的余弦值;
(3)求三棱錐D1-MNB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線x+y+1=0與圓C:x2+y2+x-2ay+a=0交于A,B兩點.
(1)若a=3,求AB的長;
(2)是否存在實數(shù)a使得以AB為直徑的圓過原點,若存在,求出實數(shù)a的值;若不存在,請說明理由;
(3)若對于任意的實數(shù)a≠$\frac{1}{2}$,圓C與直線l始終相切,求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合A滿足:若a∈A,則$\frac{1}{1-a}$∈A,且1∉A.
(1)若2∈A,請求出A中一定含有的其他元素;
(2)求證:若a∈A,則1-$\frac{1}{a}$∈A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},C={x|x=4k+1,k∈Z},D={x|x=a+b,a∈A,b∈B};則下列關(guān)系正確的是( 。
A.D⊆AB.D=BC.D⊆CD.D=C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,直四棱拄ABCD-A1B1C1D1中,底面ABCD是直角梯形,AB∥CD,AD⊥CD,2AB=CD,側(cè)面AA1D1D和側(cè)面CC1D1D是正方形,M是側(cè)面CC1D1D的中心.
(Ⅰ)證明:AM∥平面BB1C1C;
(Ⅱ)求平面MAB1與平面A1B1C1D1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.四棱錐P-ABCD中,底面是邊長為6的菱形,且∠BAD=60°,PD⊥平面ABCD,PD=8.
(1)求證:PB⊥AC;
(2)E為PB中點,求AE與平面PBD所成的角;
(3)求點D到平面PAC的距離.

查看答案和解析>>

同步練習(xí)冊答案