分析 (1)計算平均身高用組中值×頻率,即可得到結(jié)論;
(2)先理解頻率分布直方圖橫縱軸表示的意義,橫軸表示身高,縱軸表示頻數(shù),即每組中包含個體的個數(shù);根據(jù)頻數(shù)分布直方圖,了解數(shù)據(jù)的分布情況,知道每段所占的比例,從而求出這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)先根據(jù)正態(tài)分布的規(guī)律求出全市前130名的身高在182.5cm以上的50人中的人數(shù),確定ξ的可能取值,求出其概率,即可得到ξ的分布列與期望.
解答 解:(1)根據(jù)頻率分布直方圖,得我校高三年級男生平均身高為$\overline{x}$=160×0.02×5+165×0.04×5+170×0.06×5
+175×0.04×5+180×0.02×5+185×0.02×5=171.5,
∴高于全市的平均值170.5;(4分)
(2)由頻率分布直方圖知,后兩組頻率為0.2,
∴人數(shù)為0.2×50=10,
即這50名男生身高在177.5cm以上(含177.5 cm)的人數(shù)為10人;…(6分)
(3)∵P(170.5-3×4<ξ≤170.5+3×4)=0.9974,
∴P(ξ≥182.5)=$\frac{1-0.9974}{2}$=0.0013,
∴0.0013×100 000=130,
全省前130名的身高在182.5 cm以上,這50人中182.5 cm以上的有5人;
∴隨機變量ξ可取0,1,2,于是
P(ξ=0)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$=$\frac{2}{9}$,P(ξ=1)=$\frac{{C}_{5}^{1}{C}_{5}^{1}}{{C}_{10}^{2}}$=$\frac{5}{9}$,P(ξ=2)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$=$\frac{2}{9}$,
∴Eξ=0×$\frac{2}{9}$+1×$\frac{5}{9}$+2×$\frac{2}{9}$=1.…(12分)
點評 本題考查了頻率分布直方圖的應(yīng)用問題,也考查了離散型隨機變量的期望與方差的計算問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±$\frac{\sqrt{3}}{2}$x | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com