【題目】用“<”將0.2﹣0.2、2.3﹣2.3、log0.22.3從小到大排列是 .
【答案】log0.22.3<2.3﹣2.3<0.2﹣0.2
【解析】解:由指數(shù)函數(shù)圖象與性質(zhì)得:0.2﹣0.2>0,2.3﹣2.3>0,
由對(duì)數(shù)函數(shù)的圖象與性質(zhì)得:log0.22.3<0,
∵y=0.2x為減函數(shù),由﹣0.2<0,0.2﹣0.2>0.20=1,
又y=2.3x為增函數(shù),由﹣2.3<0,2.3﹣2.3<2.30=1,
∴2.3﹣2.3<0.2﹣0.2 ,
則從小到大排列為:log0.22.3<2.3﹣2.3<0.2﹣0.2 .
故答案為:log0.22.3<2.3﹣2.3<0.2﹣0.2
先根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象與性質(zhì)得到前兩個(gè)數(shù)大于0,第三個(gè)數(shù)小于0,然后比較兩個(gè)大于0之間的大小,根據(jù)指數(shù)函數(shù)底數(shù)大于1為增函數(shù),底數(shù)小于1為減函數(shù),由自變量與0的大小,分別根據(jù)函數(shù)的增減性即可作出判斷,進(jìn)而得到從小到大的順序.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),假設(shè)正確的是( )
A.假設(shè)三內(nèi)角都不大于60度
B.假設(shè)三內(nèi)角都大于60度
C.假設(shè)三內(nèi)角至多有一個(gè)大于60度
D.假設(shè)三內(nèi)角至多有兩個(gè)大于60度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={1,2,3,4,5},集合M={1,2,3},N={3,4,5},則集合{4,5}可以表示為( )
A.M∩N
B.M∩(UN)
C.(UM)∩N
D.(UM)∩(UN)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的偶函數(shù),且f(1﹣x)=﹣f(x),當(dāng)x∈[2,3]時(shí),f(x)=x,則當(dāng)x∈[﹣1,0]時(shí),f(x)的解析式為( )
A.x+4
B.x﹣2
C.x+3
D.﹣x+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題“若a>b,則a+c>b+c”的否命題是( )
A.若a≤b,則a+c≤b+c
B.若a+c≤b+c,則a≤b
C.若a+c>b+c,則a>b
D.若a>b,則a+c≤b+c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的A,B,C,D四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測如下: 甲說:“是C或D作品獲得一等獎(jiǎng)”;
乙說:“B作品獲得一等獎(jiǎng)”;
丙說:“A,D兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是C作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.x0∈R,x02+2x0+3=0
B.x>1是x2>1的充分不必要條件
C.x∈N,x3>x2
D.若a>b,則a2>b2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com