">
【題目】“有黑掃黑、無黑除惡、無惡治亂”,維護(hù)社會穩(wěn)定和和平發(fā)展.掃黑除惡期間,大量違法分子主動投案,某市公安機(jī)關(guān)對某月連續(xù)7天主動投案的人員進(jìn)行了統(tǒng)計,表示第天主動投案的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若與具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)判定變量與之間是正相關(guān)還是負(fù)相關(guān).(寫出正確答案,不用說明理由)
(3)預(yù)測第八天的主動投案的人數(shù)(按四舍五入取到整數(shù)).
參考公式:, ./span>
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為雙曲線的左、右焦點(diǎn),M為雙曲線右支上一點(diǎn)且滿足,若直線與雙曲線的另一個交點(diǎn)為N,則的面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個圓錐內(nèi)作一個內(nèi)接等邊圓柱(一個底面在圓錐的底面上,且軸截面是正方形的圓柱),再在等邊圓柱的上底面截得的小圓錐內(nèi)做一個內(nèi)接等邊圓柱,這樣無限的做下去.
(1)證明這些等邊圓柱的體積從大到小排成一個等比數(shù)列;
(2)已知這些等邊圓柱的體積之和為原來圓錐體積的,求最大的等邊圓柱的體積與圓錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD-A1B1C1D1是長方體,O是B1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,則下列結(jié)論正確是( )
A.A,M,O三點(diǎn)共線B.A,M,O,A1不共面
C.A,M,C,O不共面D.B,B1,O,M共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為2,,分別為的中點(diǎn),與交于點(diǎn),將沿折起到的位置,使平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷線段上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點(diǎn),過點(diǎn)的直線與拋物線相交于不同的兩點(diǎn),拋物線在兩點(diǎn)處的切線分別是,且相交于點(diǎn).設(shè),則的值是___(結(jié)果用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),且3,拋物線的準(zhǔn)線l與x軸交與點(diǎn)C,AA1垂直l于點(diǎn)A1,若四邊形AA1CF的面積為,則準(zhǔn)線l的方程為( )
A.B.C.x=﹣2D.x=﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,且與坐標(biāo)軸形成的三角形面積為.求:
(1)求證:不論為何實數(shù),直線過定點(diǎn)P;
(2)分別求和時,所對應(yīng)的直線條數(shù);
(3)針對的不同取值,討論集合直線經(jīng)過P,且與坐標(biāo)軸圍成的三角形面積為中的元素個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】右邊程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”. 執(zhí)行該程序框圖,若輸入的分別為16,20,則輸出的( )
A. 0B. 2C. 4D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com