3.?dāng)?shù)列{an}中,已知an=(-1)nn+a(a為常數(shù)),且a1+a4=3a2,則數(shù)列{an}的前100項和S100=-250.

分析 由題意得-1+a+4+a=3(2+a),從而可得當(dāng)n為偶數(shù)時,an-1+an=-(n-1)-3+n-3=-5,從而求和.

解答 解:∵a1+a4=3a2,an=(-1)nn+a,
∴-1+a+4+a=3(2+a),解得,a=-3,
當(dāng)n為偶數(shù)時,
an-1+an=-(n-1)-3+n-3=-5,
故S100=50×(-5)=-250,
故答案為:-250.

點評 本題考查了數(shù)列的性質(zhì)的應(yīng)用及分類討論的思想應(yīng)用及整體思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x≥0},B={-1,0,1},則A∩B=( 。
A.{1}B.{0,1}C.{-1,0}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.證明下列三角恒等式:
(1)(cosα-1)2+sin2α=2-2cosα;
(2)$\frac{1}{co{s}^{2}β}$-tan2β-sin2β=cos2β;
(3)sin3α(1+cotα)+cos3α(1+tanα)=sinα+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校某年級全體1200名學(xué)生中抽取80名學(xué)生做視力檢查.現(xiàn)將1200名學(xué)生從1到1200進行編號,在1~15中隨機抽取一個數(shù),如果抽到的是6,則從46~60這15個數(shù)中應(yīng)抽取的數(shù)是( 。
A.47B.48C.51D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解不等式:
(1)x2-x-2>0;
(2)|2x-3|≤5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{a}$、$\overrightarrow$是平面內(nèi)兩個互相垂直的單位向量,若向量$\overrightarrow{c}$滿足($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,則|$\overrightarrow{c}$|的最大值是( 。
A.1B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=(x-1)•|x-a|(a∈R).
(1)當(dāng)a=2且x≥0時,關(guān)于x的方程f(x)=kx-$\frac{2}{9}$有且僅有三個不同的實根x1,x2,x3,若t=max|x1,x2,x3|,求實數(shù)t的取值范圍
(2)當(dāng)a∈(-1,$\frac{1}{5}$)時,若關(guān)于x的方程f(x)=2x-$\frac{1}{2}$a有且僅有三個不同的實根x1,x2,x3求x1+x2+x3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若不等式組$\left\{\begin{array}{l}x-y+2≥0\\ y≥m\\ 0≤x≤2\end{array}\right.$表示的平面區(qū)域是一個三角形,則m的取值范圍是( 。
A.[2,4)B.[2,+∞)C.[2,4]D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=$\left\{\begin{array}{l}{x+1,x<0}\\{1,0≤x<2}\\{x-1,x≥2}\end{array}\right.$
(1)試確定函數(shù)f(x)的定義域;
(2)求f(-2),f(0),f(1.5),f(3)的值.

查看答案和解析>>

同步練習(xí)冊答案