18.雙曲線C的漸近線方程為y=±$\sqrt{2}$x,則C的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{6}$C.$\frac{\sqrt{6}}{2}$或$\sqrt{6}$D.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$

分析 由雙曲線的漸近線的方程可得$\frac{a}$=$\sqrt{2}$,或$\frac{a}$=$\sqrt{2}$,再利用c2=a2+b2,將所得等式轉化為關于離心率的方程即可解得離心率

解答 解:設雙曲線的實軸長為2a,虛軸長為2b,焦距為2c,則c2=a2+b2,e=$\frac{c}{a}$
∵雙曲線的漸近線為y=±$\sqrt{2}$x
∴$\frac{a}$=$\sqrt{2}$,或$\frac{a}$=$\sqrt{2}$
∴$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}$=2或$\frac{{a}^{2}}{{c}^{2}{-a}^{2}}$=2
∴c2=3a2或2c2=3a2
∴e2=3或e2=$\frac{3}{2}$
∴e=$\sqrt{3}$或e=$\frac{\sqrt{6}}{2}$
故選:D

點評 本題考查了雙曲線的幾何性質,雙曲線的漸近線方程的意義以及雙曲線離心率的求法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-2\overrightarrow b}|≤2$,則$\overrightarrow b$在$\overrightarrow a$上的投影的取值范圍是(  )
A.$[{\frac{1}{2},2}]$B.$({\frac{1}{2},2})$C.$[{\frac{1}{2},1}]$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設復數(shù)z滿足(3-4i)z=5(i是虛數(shù)單位),則z=$\frac{3}{5}+\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{5}$=l的一個焦點坐標為(3,0),則該雙曲線的離心率為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA⊥底面ABCD,M為AB的中點.
(Ⅰ)證明:平面PMD⊥平面PAB
(Ⅱ)N為PC上一點,且AC⊥BN,PA=AB=2,求三棱錐N-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程$y=\sqrt{3}x$,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\frac{1}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在三棱錐P-AMC中,AC=AM=PM=2,PM⊥面AMC,AM⊥AC,B,D分別為CM,AC的中點.
(Ⅰ)在PC上確定一點E,使得直線PM∥平面ABE,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,連接AE,與PD相交于點N,求三棱錐B-ADN的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知公比小于1的等比數(shù)列{an}的前n項和為Sn,a1=$\frac{2}{3}$且10a2-3a1=3a3(n∈N*
(1)求數(shù)列{an}的通項公式:
(2)設bn=log3(1-Sn+1),若$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}b3}$+…+$\frac{1}{_{n}_{n+1}}$=$\frac{25}{51}$,求n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若tanα=3,tanβ=$\frac{4}{3}$,則$\frac{1}{tan(α-β)}$等于( 。
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

同步練習冊答案