13.已知四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA⊥底面ABCD,M為AB的中點(diǎn).
(Ⅰ)證明:平面PMD⊥平面PAB
(Ⅱ)N為PC上一點(diǎn),且AC⊥BN,PA=AB=2,求三棱錐N-BCD的體積.

分析 (I)連結(jié)BD.由PA⊥平面ABCD得PA⊥DM,由四邊形ABCD為菱形,∠BAD=60°可知△ABD為等邊三角形,故DM⊥AB,于是DM⊥平面PAB,從而得出平面PMD⊥平面PAB;
(Ⅱ)設(shè)AC與BD的交點(diǎn)為O,連接NO.則AC⊥BD,又AC⊥BN,故AC⊥平面BNO,所以AC⊥NO,又PA⊥AC,所以PA∥NO,得出N為PC中點(diǎn),于是VN-BCD=$\frac{1}{3}{S}_{△BCD}•NO$.

解答 證明:(I)連結(jié)BD.
∵PA⊥平面ABCD,DM?平面ABCD,
∴PA⊥DM,
又四邊形ABCD為菱形,∠BAD=60°,
∴△ABD為等邊三角形,
∵M(jìn)為AB中點(diǎn),∴DM⊥AB,
又PA∩AB=A,PA?平面PAB,AB?平面PAB,
∴DM⊥平面PAB,又DM?平面PMD,
∴平面PMD⊥平面PAB.
(Ⅱ)設(shè)AC與BD的交點(diǎn)為O,連接NO.
∵四邊形ABCD為菱形,∴AC⊥BD,
又AC⊥BN,NB?平面BON,BO?平面BON,BO∩BN=B,
∴AC⊥平面BNO,∵NO?平面BON,
∴AC⊥NO,
∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC,
又PA、NO在同一平面PAC內(nèi),
∴PA∥NO,又O為AC中點(diǎn),
∴N為PC中點(diǎn),
∴NO=$\frac{1}{2}$PA=1,NO⊥平面ABCD,
∴VN-BCD=$\frac{1}{3}{S}_{△BCD}•NO$=$\frac{1}{3}×\frac{1}{2}×2×2×sin60°×1$=$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查了面面垂直的判定,線面垂直的判定與性質(zhì),棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)焦點(diǎn)與實(shí)軸垂直的直線與雙曲線的兩條漸近線交于A,B兩點(diǎn),與雙曲線交于M,N兩點(diǎn),若M,N為線段AB的兩個(gè)三等分點(diǎn),則雙曲線的離心率為(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{2}}{3}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線mx2-ny2=1(m>0、n>0)的離心率為2,則橢圓mx2+ny2=1的離心率為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1,
(2)求證:AC1∥平面CDB1
(3)求三棱錐D-AA1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)P和點(diǎn)Q的縱坐標(biāo)相同,P的橫坐標(biāo)是Q的橫坐標(biāo)的3倍,P和Q的軌跡分別為雙曲線C1和C2,若C1的漸近線方程為y=±$\sqrt{3}$x,則C2的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.雙曲線C的漸近線方程為y=±$\sqrt{2}$x,則C的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{6}$C.$\frac{\sqrt{6}}{2}$或$\sqrt{6}$D.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1(側(cè)棱垂直于底面的棱柱為直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.
(1)求證:平面ABC1⊥平面A1B1C;
(2)求三棱錐A1-ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.正整數(shù)2520的正約數(shù)(包括1和本身)共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知拋物線y2=4x,過其焦點(diǎn)F作直線l交拋物線于A、B兩點(diǎn),M為拋物線的準(zhǔn)線與x軸的交點(diǎn),tan∠AMB=$\frac{4}{3}$,則|AB|=16.

查看答案和解析>>

同步練習(xí)冊(cè)答案