17.將函數(shù)y=2sin(-2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{3}$個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式應(yīng)該是( 。
A.y=-2sin(2x)B.y=-2sin(2x+$\frac{π}{3}$)C.y=-2sin(2x-$\frac{π}{3}$)D.y=-2sin(2x+$\frac{2π}{3}$)

分析 利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=2sin(-2x+$\frac{π}{3}$)=-2sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{3}$個(gè)單位后,
得到的圖象對(duì)應(yīng)的解析式應(yīng)該 y=-2sin[2(x+$\frac{π}{3}$)-$\frac{π}{3}$]=-2sin(2x+$\frac{π}{3}$),
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x-1,則f(x)的值域?yàn)椋?1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,-2),則$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\sqrt{3}$sin2ωx-cos2ωx+$\frac{1}{2}$(其中ω為常數(shù),且ω>0),函數(shù)g(x)=f(x)-$\frac{5}{2}$的部分圖象如圖所示.則當(dāng)x∈[-$\frac{π}{6}\;,\;\frac{π}{4}}$]時(shí),函數(shù)f(x)的取值范圍是[-$\frac{3}{2}$,$\sqrt{3}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=cos(x+15°),則f(30°)=( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bsinAsinC-$\sqrt{3}$asinBcosC=0
(1)求角C的值;
(2)若a=8,c=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在數(shù)列{an}中,an+1-9an=9n+1,a1=9.
(1)求an;
(2)設(shè)bn=an(1+$\frac{2}{{9}^{n}}$)-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知曲線C:xy=1,過(guò)C上一點(diǎn)An(xn,yn)作一斜率為kn=-$\frac{1}{{x}_{n}+2}$的直線交曲線C于另一點(diǎn)An+1(xn+1,yn+1),點(diǎn)列{An}的橫坐標(biāo)構(gòu)成數(shù)列{xn},其中x1=$\frac{11}{7}$
(Ⅰ)求xn與xn+1的關(guān)系式;
(Ⅱ)令bn=$\frac{1}{{x}_{n}-2}$+$\frac{1}{3}$,求證:數(shù)列{bn}是等比數(shù)列,并寫(xiě)出通項(xiàng)公式;
(Ⅲ)若cn=3n-λbn(λ為非零正數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將函數(shù)f(x)=3cos($\frac{π}{2}$x)與g(x)=x-1的所有交點(diǎn)從左往右依次記為A1,A2,A3,…,An,若O為坐標(biāo)原點(diǎn),則|$\overrightarrow{O{A}_{1}}$+$\overrightarrow{O{A}_{2}}$+…+$\overrightarrow{O{A}_{n}}$|=(  )
A.0B.1C.3D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案