分析 (1)利用正弦定理化簡csinA=$\sqrt{3}$acosC.求出tanC=$\sqrt{3}$,進(jìn)而可求C.
(2)利用余弦定理可求b的值,根據(jù)三角形面積公式即可計算得解.
解答 (本題滿分為10分)
解:(1)∵bsinAsinC-$\sqrt{3}$asinBcosC=0,
∴由正弦定理得 sinBsinCsinA=$\sqrt{3}$sinAsinBcosC,…3分
∵0<A<π,0<B<π,
∴sinA>0.sinB>0,從而sinC=$\sqrt{3}$cosC,
又∵cosC≠0,
∴tanC=$\sqrt{3}$,
可得:C=$\frac{π}{3}$.…5分
(2)由(1)可得C=$\frac{π}{3}$,a=8,c=7,
由余弦定理可得:c2=a2+b2-2abcosC=64+b2-2×$8bcos\frac{π}{3}$=49,
∴b=3,或b=5,…8分
∴當(dāng)b=3時,S△ABC=$\frac{1}{2}$absinC=6$\sqrt{3}$;
當(dāng)b=5時,S△ABC=$\frac{1}{2}$absinC=10$\sqrt{3}$.…10分.
點評 本題主要考查三角形的有關(guān)知識,考查正弦定理、余弦定理,三角形面積公式、三角函數(shù)的最值的應(yīng)用,是?碱}型,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,6) | B. | (-∞,-1)∪(2,6] | C. | (-2,-1)∪(2,6] | D. | (3,6] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2sin(2x) | B. | y=-2sin(2x+$\frac{π}{3}$) | C. | y=-2sin(2x-$\frac{π}{3}$) | D. | y=-2sin(2x+$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S2 | B. | S61 | C. | S62 | D. | S63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{5}$) | B. | (0,$\frac{1}{3}$) | C. | ($\frac{1}{5}$,$\frac{1}{3}$) | D. | ($\frac{1}{3}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com