在公路旁有一條河,河對(duì)岸有高為24m的塔AB,當(dāng)公路與塔底點(diǎn)B都在水平面上時(shí),如果只只有測(cè)角器和皮尺作測(cè)量工具,塔頂與道路的距離為
 
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:計(jì)算題,解三角形
分析:利用測(cè)角器,在點(diǎn)C測(cè)得塔頂A的仰角為θ,由三角函數(shù)可得,sinθ=
AB
AC
,即可得出結(jié)論.
解答: 解:利用測(cè)角器,在點(diǎn)C測(cè)得塔頂A的仰角為θ,
由三角函數(shù)可得,sinθ=
AB
AC
,
∵AB=24m,
∴AC=
24
sinθ
m.
故答案為:
24
sinθ
m.
點(diǎn)評(píng):本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查三角函數(shù),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx的圖象過(guò)點(diǎn)(-4n,0),且f′(0)=2n,n∈N*,數(shù)列{an}滿足
1
an+1
=f′(
1
an
)
,且a1=4,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)記bn=
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2,則函數(shù)f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b+1(b為常數(shù)),則f(-1)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=(ax+1)-2(a>0,且a≠1)的圖象恒過(guò)定點(diǎn),則定點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)f(x)=kx+b的圖象經(jīng)過(guò)點(diǎn)P(1,2)和Q(-2,-4),令an=f(n)f(n+1),n∈N*,記數(shù)列{
1
an
}的前項(xiàng)和為Sn,當(dāng)Sn=
6
25
時(shí),n的值等于( 。
A、24B、25C、23D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=sin(ωx+φ)(ω>0,|φ|≤
π
2
)在區(qū)間[0,1]上是單調(diào)函數(shù),其圖象經(jīng)過(guò)P1(-1,0),P2(0,1),則此函數(shù)的最小正周期T及φ的值分別為( 。
A、T=4,φ=
π
2
B、T=4,φ=1
C、T=4π,φ=
π
2
D、T=4π,φ=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=x+1},B={y|y=x+1},則集合A與B的關(guān)系是( 。
A、A⊆BB、A?B
C、A=BD、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=2an+3,且a1=1,求an

查看答案和解析>>

同步練習(xí)冊(cè)答案