12.已知2sinxtanx=3,(-π<x<0),則x=( 。
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$-\frac{5π}{6}$D.$-\frac{2π}{3}$

分析 利用本題主要考查同角三角函數(shù)的基本關(guān)系,求得cosx的值,可得x的值.

解答 解:∵2sinxtanx=3,∴$\frac{{2sin}^{2}x}{cosx}$=$\frac{2-{2cos}^{2}x}{cosx}$=3,解得cosx=-2 (舍去)或cosx=$\frac{1}{2}$.
再根據(jù)-π<x<0,則x=-$\frac{π}{3}$,
故選:A.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AP=1,AD=$\sqrt{3}$,E為線段PD上一點(diǎn),記$\frac{PE}{PD}$=λ. 當(dāng)λ=$\frac{1}{2}$時,二面角D-AE-C的平面角的余弦值為$\frac{2}{3}$.
(1)求AB的長;
(2)當(dāng)λ=$\frac{1}{3}$時,求直線BP與直線CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)(1-2x)3=a0+2a1x+4a2x2+8a3x3+16a4x4+32a5x5,則a1+a2+a3+a4+a5=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面區(qū)域Ω:$\left\{{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}}$,夾在兩條斜率為-$\frac{3}{4}$的平行直線之間,且這兩條平行直線間的最短距離為m.若點(diǎn)P(x,y)∈Ω,且mx-y的最小值為p,$\frac{y}{x+m}$的最大值為q,則pq等于(  )
A.$\frac{27}{22}$B.$\frac{2}{5}$C.$\frac{27}{25}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)?shù)列|{an}滿足a1=8,且${a_{n+1}}-{a_n}={2^{n+1}}$(n∈N*),則數(shù)列|{an}的前n項和為2n+2+4n-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)為定義在R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞增,若f(a)<f(2a-1),則a的取值范圍是( 。
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓心在x軸上、半徑為$\sqrt{3}$的圓O位于y軸左側(cè),且與直線x+y=0相切,則圓O的標(biāo)準(zhǔn)方程是(x+$\sqrt{6}$)2+y2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l交橢圓與兩點(diǎn)A,B,則|AF2|+|BF2|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,矩形O′A′B′C′是水平放置的一個平面圖形的直觀圖,其中O′A′=6,O′C′=2,則原圖形OABC的面積為24$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案